

Datalogics PDF2IMG™
User Guide

PDF2IMG version 4.8

©2017-2023 Datalogics, Inc. All rights reserved.
Use of Datalogics software is subject to the applicable license agreement.

PDF2IMG is a trademark of Datalogics, Inc.

For additional information, contact us at http://www.datalogics.com/.

http://www.datalogics.com/

Page i

Table	of	Contents	
Introduction ... 1

Deliverables .. 1

Installing the Software ... 2

Licensing ... 2

Running .. 3

Command Line Syntax .. 3

Command Line Summary ... 3

Required Arguments .. 3

Optional Arguments ... 3

Arguments and Options ... 8

Required ... 8

Optional .. 8

Color Management .. 30

Conversions with ICC Color Profiles ... 31

Conversions with Missing Resources .. 31

Font and CMap Location Searches ... 32

Providing Custom Locations for Font Files ... 32

Multi-Page Processing .. 33

Working with the .NET Interface (Windows 64) ... 35

Troubleshooting ... 36

Problems with Opening a PDF Document .. 36

Problems with High-Resolution Conversions ... 37

Blurry Text Appears in Output File ... 38

Appendix: API Calls, C Language Interface ... 40

pdf2img_check_for_missing_appearances .. 40

pdf2img_convert_page .. 40

pdf2img_destroy_conversion ... 41

pdf2img_end_multipage .. 42

pdf2img_error_string ... 42

pdf2img_get_extended_error .. 43

Page ii

pdf2img_get_num_pages ... 43

pdf2img_get_pagemem ... 44

pdf2img_get_pagememsize ... 44

pdf2img_get_profiledata ... 45

pdf2img_get_profilesize ... 46

pdf2img_get_region_remove_white_margins ... 46

pdf2img_init ... 47

pdf2img_init_ex ... 47

pdf2img_last_error .. 48

pdf2img_new_conversion .. 49

pdf2img_new_conversion_with_password ... 49

pdf2img_new_memconversion .. 51

pdf2img_new_memconversion_with_password ... 51

pdf2img_release_pagemem ... 52

pdf2img_set_blackisone ... 53

pdf2img_set_bpc .. 54

pdf2img_set_color_profile_from_buffer ... 55

pdf2img_set_color_profile_from_description ... 56

pdf2img_set_color_profile_from_output_intent .. 57

pdf2img_set_colormanagement .. 58

pdf2img_set_colorspace .. 59

pdf2img_set_compression ... 60

pdf2img_set_enhance_thin_lines .. 61

pdf2img_set_horiz_res ... 62

pdf2img_set_input_color_profile_from_buffer ... 62

pdf2img_set_input_color_profile_from_description ... 63

pdf2img_set_input_color_profile_from_output_intent .. 64

pdf2img_set_max_band_memory ... 65

pdf2img_set_multipage ... 66

pdf2img_set_OPP ... 67

pdf2img_set_output_region .. 67

pdf2img_set_output_type ... 69

Page iii

pdf2img_set_pdf_output_type .. 70

pdf2img_set_quality ... 71

pdf2img_set_render_intent ... 72

pdf2img_set_resampler ... 73

pdf2img_set_reverse ... 74

pdf2img_set_size_pixels .. 75

pdf2img_set_smoothing .. 75

pdf2img_set_vert_res .. 76

pdf2img_setasprinted .. 77

pdf2img_setprintannot .. 77

pdf2img_start_multipage ... 78

pdf2img_term () ... 79

pdf2img_verify_options ... 79

pdf2img_version_string() ... 80

pdf2img_set_split_layers ... 80

Appendix: API Calls, .NET Interface .. 82

PDF2IMG .. 82

LoadInput ... 83

CheckForMissingAppearances .. 83

ConvertPageToImage ... 83

ConvertAllPagesToTIFFImage ... 84

GetPageBoxWithWhiteSpaceRemoved .. 84

SetImageConversionOptions .. 84

Page 1

Introduction
Datalogics PDF2IMG is a conversion utility that allows you to transform pages in a PDF or XPS document
into graphics image files like BMP, GIF or JPEG. You can also use PDF as one of the export formats. That
means that you could take a 15-page PDF document and use PDF2IMG to turn it into 15 separate PDF
documents, one PDF for each page in the original document. Alternatively the same 15-page PDF can be
converted into a series of 15 different PNG files.

This product was created using the Adobe PDF Library, a Software Development Kit (SDK) based on
Adobe Acrobat technology. The Adobe PDF Library is also available from Datalogics.

Deliverables
The installation includes:

1. pdf2img, the command line program.
2. Resources, dependencies used for proper rendering of PDF content.
3. pdf2imglib, the library itself.
4. pdf2img.vcproj, Visual Studio project file for command-line program

Page 2

Installing the Software
Installing the PDF2IMG software is easy, simply run the installer on Windows or Linux.

Licensing
PDF2IMG is available for a free evaluation period. You can download and install it from our website and
enter the activation key when prompted. The installation process generates a license file in your
installation directory, and you will be ready to start using the software immediately. Please contact
Datalogics to extend your evaluation.

Note that if you don’t enter the activation key value when you first install the product, or enter it
incorrectly, you will be prompted to enter the value again the next time you run the command line
executable.

The license file should be stored in the same directory where you place pdf2img.

To generate a new license file, run your application that using pdf2img and enter the activation key
again when prompted. Or you can copy the original license key file to the directory where you store your
executable.

Note: The Windows installation adds the location of the pdf2img dependencies to the %PATH%
Environment Variables, so you can run “pdf2img.exe” from anywhere.

Linux

On Linux, append to $PATH the location of pdf2img.

Note: GCC library v4.8 or higher is required to link against the libpdf2img.so shared library on Linux.

You can also use the “fontlist” command line argument to specify the location of font resources you
want to use when you use PDF2IMG to complete a PDF document conversion.

Page 3

Running
pdf2img offers several options for controlling Resolution, Color Model, Color Bit Depth and other
settings, depending on output format selected.

For details on working with the library APIs, see the Appendix.

Command Line Syntax
The syntax is:

pdf2img [options] <inputFile> <outputFormat>

Only the inputFile and outputFormat arguments are required.

There are many other optional arguments to allow finer grain control over conversion.

Command Line Summary

Required Arguments

Argument name Description

inputFile Input PDF file name

outputFormat Output graphic format–BMP/EPS/GIF/JPG/PDF/PNG/RAW/TIF

Optional Arguments

Use the following optional arguments in any order, preceding the required <inputFile> and
<outputFormat> arguments. For example:

pdf2img -firstonly -colormodel=gray -bpc=1 -jpegquality=40 -resolution=72
input.pdf jpg

The two required arguments appear at the end, “input.pdf” as the file name (inputFile) and “jpg” as the
output format (outputFormat).

Argument name Description

asprinted If specified, reverse the Annotation handling to suppress Image-only
annotations and allow Print-only annotations

blackisone If specified, reverse the PhotometricInterpretation setting to be
black=1/white=0

TIFF only

Page 4

Argument name Description

blendingspace Specify a blending color space by naming a profile description or providing a
name and path of the profile (icc) file.

Default = CMYK

bpc Provide the number of bits used to represent each output color channel.

Default = 8

colormodel Define the color model, cmyk/gray/lab/rgb/rgba

Default=rgb

colorprofile

Define the output ICC color profile.

Default determined by color space

compression Define the compression method, no/jpg/lzw/g3/g4

Default=lzw

digits If provided, use to specify the number of digits to use in the sequential
output filename counter

firstonly Convert only the first page of the input file.

Default=all pages

fontlist If specified, provide a quoted semicolon-delimited list of alternate
directories for font resources

help If specified, provide a help list of available commands

ignoredefaultfonts If specified, ignore default font resource locations when searching for fonts
at start up (default directories and current directory)

ignorewarn If specified, suppress warnings for non-renderable content

intent Define the goal or priority for rendering intent for colors:
perceptual/relative/saturation/absolute/profile

Default= profile if color profile is specified, otherwise perceptual

Page 5

Argument name Description

jpegquality Set the JPEG compression quality from 1 to 100

Higher values produce a better image but also a larger output file size.

JPEG only, Default=75

maxbandmem Define the maximum memory to use per band of multiband conversion
output in bytes.

JPEG or TIFF only, Default=300000000

multipage If specified, produce one multipage TIFF output file of the requested name
rather than the default of single-page sequentially named output files

TIFF only

noannot If specified, suppress viewable annotations

nocmm If specified, suppress Color Management Module

noenhancethinlines If specified, do not enhance thin lines when rendering

OPP If specified, enable Overprint Preview (OPP) in output

output Provide a prefix for output filename(s) to be created.

Default=input PDF file name plus sequence number

outputintent If specified, use the output intent dictionary value found in the source PDF
document to define the output color profile to use when rasterizing a
document

pages If specified, provide a page or range of pages to process, such as 14-last or
2-9

password If specified, enter a password string required to open the document for
conversion

pdf-rasterize Rasterize each page and export the content to a single PDF output file.

pdf-rasterize-split Rasterize each page and export the content to a series of PDF output files,
one for each page in the source document.

Page 6

Argument name Description

pdfregion Define the region of PDF page to rasterize.

Options include art, bleed, bounding, crop, media, or trim.

Default=crop

pdf-split Split a PDF document into a series of separate PDF documents, one PDF
document for each page in the source file.

pixelcount If specified, define an absolute picture size expressed as horizontal by
vertical number of pixels. This can be used to specify a fixed number of
pixels for the width and/or height of an output image, and thus scale the
image up or down as needed to a specific output size and dimension.

profileCMYK Provide the name and location of the CMYK color profile or description of
the color profile to use for CMYK values specified in uncalibrated (device)
color values in the input PDF file.

Default=Adobe Reader 9 CMYK

profileGray If specified, provide the name and location of the grayscale color profile or
description of the color profile to use for grayscale values specified in
uncalibrated (device) color values in the input PDF file.

Default=Gray Gamma 2.2

profileRGB If specified, provide the name and location of the RGB color profile or
description of the color profile to use for grayscale values specified in
uncalibrated (device) color values in the input PDF file.

Default=sRGB

relaxParseSyntax If specified, relaxes parsing restrictions to fix minor syntax issues in PDF
source documents.

removewhitespace If specified, direct PDF2IMG to remove the white space margins around the
content on a page in the PDF document

resampler Apply bicubic resampling: auto, bicubic, or none.

Default=auto

Page 7

Argument name Description

resolution Define output resolution, from 12 to 2400 in Dots per Inch

Default=300

reverse If specified, use to create a negative image.

Grayscale output formats only

smoothing Specify to apply Image antialiasing. Options include none, text, line, image,
or all.

Page 8

Arguments and Options

Note: You can always enter the command pdf2img -help to list details of the command line syntax.

Required

inputFile

inputFile

The inputFile argument is the name of your input PDF or XPS file. Specify a path to its location if it is not
in your present working directory.

Note: By default, the software will place your output files in the same folder as your input file unless
you specify otherwise using the -output option. See “Redirecting Output to Another Location.” If an
existing version of the same output file is stored in the output directory, PDF2IMG will overwrite that
earlier version of the file with the new output file if the two files share the same name.

outputFormat

outputFormat

This argument defines the output graphic format you request: BMP, EPS, GIF, JPG, PDF, PNG, RAW or
TIF.

Note: The limit for JPEG output image size is 65535 x 65535 pixels. TIF output has been tested up to a
band of 68898 x 34449 pixels in size.

Optional

asprinted

-asprinted

By default, PDF2IMG renders the document to image format in the form as you would see it on screen,
not as you would see it on paper. Normally, print annotations are omitted from the rendering process
and only those annotations intended for viewing on screen are included, but -asprinted allows you to
override that and reverse the distinction. That way you can render printable annotations, or those
annotations which have been flagged as printable by the document author, when converting the
document to an image.

Further, the use of -asprinted will suppress annotations flagged by the document author as for viewing
on screen only (non-printing). Those will no longer appear in output images if this argument is selected.

Note: This command can be overridden by the -noannot flag.

Page 9

blackisone

-blackisone

(TIFF Only: Defaults to CMYK)

Use the -blackisone argument to direct PDF2IMG to declare a reversed PhotometricInterpretation value
of black=1; white=0 in the header of TIFF image file. The TIFF image file is defined with an output of 1-bit
(black and white). This argument corrects a problem existing in some third-party PDF documents,
where the converted TIFF output may unexpectedly display in reversed (negative) format when viewed
via certain display utilities.

Consider the screenshot below. The white on black thumbnail image at right shows one such problem
document which was converted without the -blackisone flag.

The corrected equivalent is on the left:

You normally will not need this switch. Also, -blackisone will have no visible effect on systems or utilities
that read and understand the PhotometricInterpretation setting in the image header, since they will
reverse their interpretation to correspond to that setting, and their output will look the same either
way. This only affects systems having a fixed interpretation that does not agree with the original
encoding of the image and gives you the ability to reverse the image encoding if needed.

Note: This switch is intended to correct a problem of unwanted display reversals seen in documents
produced by some third-party PDF products. It is not intended for generating negative output. If
you want to generate reverse or negative images, use the reverse switch.

blendingspace

Page 10

–blendingspace=[description|.icc file name]
-blendingspace=“Adobe RGB (1998)”
-blendingspace=c:\Windows\System32\spool\drivers\color\CoatedFOGRA39.icc

(Default: CMYK)

Users can specify a blending color space, by naming a profile description, or providing a name and path
of the profile (.icc) file.

PDF files can have objects that are partially or fully transparent, and thus can blend in various ways with
objects behind them. Transparent graphics or images can be stacked in a PDF file, with each one
contributing to the result that appears on the page. With a stack of transparent images, the final colors
shown are the result of blending the colors of all the overlapping objects. The flattening process merges
a stack of transparent objects or graphics images into a single image on the page. Flattening images in a
PDF file is necessary before you can render the page as a graphics image.

If a page in a PDF document has transparencies that need to be flattened, the page must go through an
intermediate blending space before it can be rendered as a graphic output file. By default, that blending
space is CMYK in PDF2IMG, but you can use the blendingspace option to select your own color profile
for flattening transparencies, in the form of an icc file.

bpc

-bpc=[1 | 8]
-bpc=1
-bpc=8

(Default: 8)

This argument refers to the Image Depth expressed as Bits per Color channel, or the number of bits used
to represent a color channel sample in the selected output format. Typically, the bpc is 8 for color or
grayscale images, and 1 for black and white.

This dictates the number of different values or levels that each color channel may have, by specifying how
many bits can be allocated for the color channel value. Thus, a bpc of 1 indicates that the color can only be
either all present or all absent (such as black and white), since the single bit can only represent 0 or 1, the
presence or absence of that color. A bpc of 8 indicates that eight bits are allocated for each color channel
level, representing 256 gradients from None to full saturation (from 0 to 255) for that color.

Note: When producing TIFF g3 or g4 compressed output, you must include a colormodel argument
(colormodel=gray) and a bpc argument (bpc=1).

In color images, each pixel is made up of three color channels, in the form of RGB (Red/Green/Blue), or
four-color channels, as CMYK (Cyan/Magenta/Yellow/Black). Bit depth for each of these is always 8 and
indicates that there may be 256 shades of each color.

Page 11

colormodel

-colormodel=[cmyk | gray | lab | rgb | rgba]
-colormodel=gray

(Default: rgb)

The colormodel will be cmyk, gray, lab, rgb, or rgba. The valid colormodel choices are determined by the
output format selected.

Note: You can’t define a color model for PDF or XPS output. If you select PDF or XPS as the output format
and include the “-colormodel” option in your command line statement, the software will ignore it.

Output Format Color Models Available

BMP gray or rgb
GIF gray or rgb
JPG cmyk/gray/rgb
PNG gray/rgb/rgba
TIFF cmyk/gray/lab/rgb/rgba
For lab (valid in TIFF output only), 24-bit CIELAB images will be drawn, using 8 bits per channel. Values in
that device-independent color model are relative to the D50 white point. PDF2IMG will return an error
message if the requested colormodel is invalid for the selected format.

Note: When producing TIFF g3 or g4 compressed output, you must include a colormodel argument
(colormodel=gray) and a bpc argument (bpc=1).

Note: Adobe Photoshop reads and writes CMYK JPEG files in a slightly non-standard format. As a result,
if you use PDF2IMG to generate a JPEG in CMYK, the image may appear somewhat discolored when
viewed in Photoshop.

Page 12

colorprofile

-colorprofile =[filename or description]
-colorprofile=AdobeRGB1998.icc

(Default determined by colorspace)

Color profiles are standards for managing colors, used to guarantee that the colors for text or graphics in
a file remain the same regardless of the hardware or software used to display, edit, or print that file. A
color profile is usually included in the software or driver for an installed printer, scanner or other
hardware device, or in software used to edit a file that is to be displayed or printed. The hardware
device or software product uses the color profile to interpret the colors provided in a file, so that those
colors can be presented accurately across more than one platform.

PDF2IMG selects default color profiles for both the input PDF and the target image rendering. The
default input profiles (working spaces) apply to PDF elements that are not explicitly calibrated, such
as DeviceCMYK, DeviceGray, DeviceRGB. The default output profile is chosen based on the target
colormodel specified. The default ICC color profiles are provided in this table:

Color Space ICC Color Profile (Input) ICC Color Profile (Output)

CMYK Adobe Reader 9 CMYK Adobe Reader 9 CMYK
Gray Gamma 2.2 Gray Gamma 2.2
L*a*b CIE 1976 (l*a*b*) color specification with a D50 white point
RGB/RGBA sRGB sRGB

Use the colorprofile option to select the output profile, and profileCMYK/profileRGB/profileGray to
select the input profile. The profile’s filename refers to the name of the ICC Color Profile file, usually
ending with an “.icc” suffix, as in "AdobeRGB1998.icc." If the program is calling an ICC file from another
directory, provide the path name for the file as well.

For the colorprofile option, you will probably want to enter the ICC filename, but you can also enter the
profile description, corresponding to the description field of the selected ICC profile, as in "Adobe RGB
(1998).”

compression

-compression=[no | jpg | lzw | g3 | g4]
-compression=no
-compression=jpg

Page 13

-compression=lzw
-compression=g3
-compression=g4

(TIFF Only)

(Default: lzw)

Note: When producing TIFF g3 or g4 compressed output, you must include a colormodel argument
(colormodel=gray) and a bpc argument (bpc=1).

Use this option to specify output compression of TIFF images as needed. Valid values depend on the
type of TIFF images being processed.

For color images you can select "no" (no compression), jpg, or lzw, to turn compression on or off.

For black and white images (1 channel, 1 bit), you can also specify g3 or g4 compression.

digits

-digits=[0 to 9]

The -digits command line argument allows you to specify the number of digits to be used for the
sequential output filename numbering suffix. For example, if you enter:

-digits=3

as part of a command, the export files generated from your input PDF document will be named
FILE001.JPG, FILE002.JPG, and so on.

If you don’t use the “-digits” argument no numbers will be added to the export file names.

Normally, leading zeroes are only added as required to maintain the sorting order of the files. That is, a
PDF input file with 200 pages will be processed to create a series of JPEG or PNG output files with names
like FILE_001.JPG and FILE_002. But you can use the digits argument to force a specific number of digits
regardless of the input page count. So, if you enter “-digits=4” the system will generate graphics output
files with file names like FILE0001 and FILE0002, even if the PDF input file only has 12 pages, making the
extra leading zeroes, strictly speaking, unnecessary.

Note: If you use the digits command line argument the system will not include the underscore character
("_") in the output file names, even though this would normally come before the sequence number
otherwise (as in "FILE_001.JPG").

If you set the -digits value equal to zero (-digits=0) the system will return to normal sequential
numbering and file naming logic.

Page 14

If you enter a -digits value equal to one (-digits=1) the system will not add any leading zeroes to the
output file names, and it will also suppress the use of the underscore character (FILE1.JPG, FILE2.JPG).

Note: You must specify a -digits value at least as high as what the input file would require by default. For
example, a 200-page input file requires a “-digits” value of 3 or higher (-digits=3). No error will occur, but
later file names in the output sequence may be one or more digits longer than earlier file names as a
result, leading to problems listing the files in order. For example, you might see FILE98, FILE99, and
FILE100 instead of FILE098, FILE099, and FILE100.

firstonly

-firstonly

The firstonly command directs PDF2IMG to convert only the first page of the input PDF file. Otherwise,
the software converts every page found in the document. This option does not accept a value.

fontlist

-fontlist="directory1;directory2;directoryN"
-fontlist="C:\Test\Client\Fonts"
-fontlist="C:\Alternate\Fonts\Test;C:\Application\Resources"

(Adobe Systems standard search locations)

The -fontlist argument passes to the PDF2IMG system an alternate list of directories where the system
can find font files. PDF2IMG will use the first instance of each font that it finds.

The following rules apply:

• The values included in the -fontlist argument--that is, the names of font directories--must be
separated by semicolons.

• Wildcard characters such as tildes (~) or asterisks (*) are not allowed.
• The list of values must be enclosed in double quotes.
• You can list up to 16 locations with the -fontlist argument.

You generally do not need the -fontlist option unless you are using font files not actually installed on
your machine. For example, this might be font files that are stored on your machine but not installed or
recognized as fonts by the operating system. Also, you might want to use the -fontlist option if you have
also specified the -ignoredefaultfonts flag with a PDF document that may not have embedded all its
necessary font resources.

Page 15

In addition, the -fontlist option will replace the default search for fonts. For example, if the -fontlist
option is not given, PDF2IMG on a Windows machine will look for font files in the folders provided with
the PDF2IMG software installation:

C:\Program Files\Datalogics\PDF2IMG Pro\Resources\CMap
C:\Program Files\Datalogics\PDF2IMG Pro\Resources\Font

Regardless of whether the -fontlist option is given, both Windows and UNIX versions always search the
following locations, relative to the present PDF2IMG installation directory, unless the command also
specifies the -ignoredefaultfonts flag:

• Resources
• Resources/CMap
• Resources/Font

Note: A list of directories given here replaces the default Adobe search locations; it does not append to
them. Platform default resource locations such as C:\Windows\Fonts or similar on Windows are always
searched. The -fontlist argument only overrides the Adobe location search.

help

-help

If you would like to list basic information about the proper syntax and accepted values for every one of
the PDF2IMG command line arguments, enter the -help option. This option does not accept a value.

ignoredefaultfonts

-ignoredefaultfonts

Normally, when PDF2IMG starts it searches for local font resources, looking in the default system font
directories and the current working directory. Use the -ignoredefaultfonts option to suppress this
search. Instead, the system will only use the resources specified in the supplied -fontlist option
statement. This option does not accept a value.

ignorewarn

-ignorewarn

The -ignorewarn command suppresses the warning normally returned whenever non-renderable
content is encountered in the input file. This option does not accept a value.

intent

Page 16

-intent=[perceptual | relative | saturation | absolute | profile]

(Default: profile if a profile is supplied; otherwise, perceptual)

-intent=relative

Use the -intent option to specify the color translation method for colors that are outside the gamut of
the color profile. The intent feature is useful if you are converting a PDF page to a graphic file. If the
resulting file includes a color or colors that cannot be represented directly on a specific hardware device,
the intent lets the PDF2IMG software determine how to substitute a color that can be written to the file.

With the intent option, when you use PDF2IMG to convert a PDF document to a graphic file or files, you
can select from a list of standard strategies to apply when converting the colors in that original PDF
document. Thus, when you print or display a graphic output file, the colors in the output file will match
as closely as possible the original color found in the source PDF document.

You can provide both color profile and intent options with your request, or either one. You do not need
to define a color profile with your intent option. See the description of “Rendering Intents” in ISO 32000-
1:2008, Document Management-Portable Document Format-Part 1: PDF 1.7, section 8.6.5.8, page 154.

Values you can enter for intent include:

Value Description

perceptual Generally used for photography. This method does not map colors one for one but
estimates to match colors. Hence it often provides the most pleasing result but not
necessarily the most accurate. If you do not specify a color profile in the “colorprofile”
option, the intent value defaults to perceptual.

relative Generally used for photography. The relative method uses an algorithm to select the
closest possible color map to be true to the specified color.

saturation Commonly used in charts and diagrams with a limited palette of colors where hue is
not as important.

absolute Often used to select a specific color or set of colors for drawings or designs. For
PDF2IMG absolute will serve to reproduce the exact colors provided in the original PDF
document. A common reason for using absolute would be to reproduce the color used
in a corporate logo such as IBM Blue. The color is changed by selecting a defined
match. This method does not use a conversion algorithm to select the closest color
available.

profile If you specify a color profile in the color profile option the intent value defaults to
profile. In that case PDF2IMG will use the rendering intent provided with the ICC color
profile currently in use.

Page 17

 For example, the Adobe RGB 1998 color profile uses Relative Colorimetric as its
rendering intent. If PDF2IMG specifies Adobe RGB 1998 as the color profile (and an
alternate intent option is not specified) the PDF2IMG software will use relative.

jpegquality

-jpegquality=[1 to 100]
-jpegquality=50

(Default: 75)

The jpegquality option is a value from 1 to 100, representing the quality/size value for the JPEG
compressor. A higher value will produce a higher quality image, though also a larger output file. Lower
values will produce lower-quality images but smaller and more efficient output graphic files.

Note: Lowering the JPEG Quality value will not only lower the detail of the image, but also lower the
precision of the colors as compared with the original input. For example, rendering a JPEG image at 50%
quality rather than some value significantly higher may yield a result that not only shows less detail but
also contains slightly different shades of color.

maxbandmem

-maxbandmem=[100000000 to 2100000000]

(JPEG or TIFF only; Default: 300000000)

When generating JPEG or TIFF output, PDF2IMG checks to see if it has enough memory to rasterize a
PDF page in one pass. If not, it rasterizes the page in bands (strips) to use less memory, then
reassembles the bitmaps into the finished output image. This banding approach (if needed) will have no
effect on the final output appearance and will be transparent to the user; the memory allocation or
banding is handled internally.

You will typically not need this call. The -maxbandmem option allows you to fine tune the process to
convert PDF document pages to JPEG or TIF files, if you find that your application’s performance is
enhanced by making the size of the rendering bands either larger or smaller within the technical limits of
your machine.

multipage

-multipage

(TIFF only; No default)

Page 18

Normally, processing a multipage PDF input file will result in a series of sequentially ordered, single-page
output files, each carrying the given or default output file name prefix, an underscore ("_") and a
sequential number. If performing a conversion to TIFF, -multipage directs PDF2IMG to produce one,
multipage TIFF output file instead.

noannot

-noannot

Specify -noannot in a command line to prevent displayable annotations from appearing in output files.

Note: Use -noannot with care. Many page objects can be various forms of annotation, some more
obvious than others, so you should check your output carefully to ensure that you are suppressing only
those annotations that you want to block.

Note: This command will override the -asprinted option.

nocmm

-nocmm

The -nocmm option suppresses the use of the Color Management Module (CMM) and embedded color
profiles during conversion to selected output graphic image formats.

For PDF2IMG, color management is normally in effect, so the product assumes an output profile
of Adobe Acrobat CMYK, sRGB, or Gamma 2.2 (as appropriate for the output format) and will assume
that Device colors on input are calibrated as Adobe Acrobat CMYK, Adobe 1998 RGB, or Gamma 2.2
respectively. When generating TIF, JPEG, PNG or BMP output, PDF2IMG will embed the corresponding
profile in the output image.

When -nocmm is s specified, PDF2IMG will draw the output to a device color, embed no profile in the
image written, and presume no default color model for input device colors.

noenhancethinlines

-noenhancethinlines

PDF2IMG uses the "Enhance thin lines" rendering option by default. This process is also found in Adobe
Reader and Adobe Acrobat. If this is not the effect you want, use the -noenhancethinlines option to turn
it off.

Page 19

OPP

-OPP

(Default: false)

The OverPrint Preview (OPP) option allows you to generate a graphic that represents the Overprint
content that would otherwise be lost during the rendering process. The graphic will show what the input
PDF page would look like after being printed, accounting for ink overprinting. See the pdf2img_set_OPP
reference.

output

-output=[filename]
-output=alternate_name
-output="C:Converted_Filesalternate_name"

(Default: Input PDF file name plus sequence number)

Use -output to define the prefix to add to the name of the output file or files you seek to create. The
value given here will be used for the output file name, with a sequence number and an appropriate
extension appended to indicate the output file type, such as sample_1.gif and sample_1.jpg. For a PDF
input document with more than one page, the system will create sequential, separate output files for
each page of the input file, with a sequence number appended to each, such as sample_1.gif,
sample_2.gif, sample_3.gif, and so on.

See “Multi-Page Processing.”

You can also use the output option to redirect output files to the local or server directory that you
select. This is described below.

Note: The Underscore character ("_") that normally precedes the sequence number is not inserted if the
-digits command line argument is used.

If you do not include the -output option in a command, PDF2IMG will assign the name of the input PDF
file name to each output graphic file and add a sequence number. For example, if you are starting with
a five-page PDF document called Test.PDF, and are exporting the pages to JPEG files, the five output files
will be named Test_1.JPG, Test_2.JPG, and so on.

Redirecting Output to Another Location

You can use the -output option to save your output file or files to another location, but the following
notes apply:

• If you copy an output file to a folder, and the folder already has an existing output file with the
same name as the new file, the new file will overwrite the existing file in that directory.

Page 20

• If you want to store your output files in a folder that you choose, you must create that folder
first.

• You need to provide the name of your output file along with the path name of the folder where
you want to save that file. When you redirect output files to your own directory, PDF2IMG will
not use the name of the input file by default.

outputintent

-outputintent [description]
-outputintent=GTS_PDFX

This option defines the output color profile for PDF2IMG to use when rendering a page from a PDF
document to a rasterized graphic image. The argument tells the software to find the profile to use in the
output intent stored in the PDF document itself.

An output intent is set of dictionaries stored in the PDF document’s OutputIntents array. More than one
output intent may be imbedded in an output intent array within a PDF document, each with its own
color profile and characteristics. This allows the PDF document to adapt to a variety of workflows or
production environments. Each output intent features several dictionary key values, including
OutputCondition and an OutputConditionIdentifier. Both values are text strings that describe the
intended output device for this PDF document or the production environment.

The output intent dictionary also offers a SubType (S) dictionary key, an optional value that further
describes the PDF document format.

Three output intent subtypes are defined:

• GTS_PDFX for PDFX, or Graphics Exchange documents
• GTS_PDFA for PDF Archive documents
• ISO_PDFE for PDF Engineering documents

See the description of “Output Intents” in ISO 32000-1:2008, Document Management-Portable
Document Format-Part 1: PDF 1.7, section 14.11.5, page 633.

When you create the outputintent argument in a PDF2IMG command statement, the Description variable
will be a description of a color profile embedded in an OutputCondition, OutputConditionIdentifier, or
Subtype dictionary.

pdf2img -outputintent=JC200103 TestFile.pdf tif

PDF2IMG looks at the OutputConditionIdentifier entries in the output intent array for the color profile
JC200103. Then, PDF2IMG applies that profile when converting a PDF document called TestFIle.PDF to a
TIF file.

Page 21

This command:

pdf2img -outputintent=GTS_PDFA sample_jc.pdf tif

Tells PDF2IMG to use the color profile used with the PDFA subtype and create a TIF file from
TestFile.PDF. The conversion will be governed by the requirements defined for the PDF Archive format.

If you don’t specify an input color profile or an output color profile, PDF2IMG will assign a default color
profile for each. You can use profileCMYK, profileRGB, or profileGray to assign an input color profile
when you convert a PDF document to graphic images. To select a specific color output profile to use
when converting a PDF document page to a graphics file, you can use the colorprofile argument. Or you
can use the outputintent argument to find and use a color profile embedded in the PDF document itself.

PDF2IMG will use the color profile specified with the outputintent argument for both the output color
profile and the input color profile unless you define an input color profile using profileCMYK, profileRGB,
and/or profileGray. You can use the color profile values (such as colorprofile or profileCMYK) and an
outputintent value in the same argument. If PDF2IMG cannot find the color profile specified in the
outputintent argument within the PDF document, it will ignore the outputintent statement and select a
different color profile or profiles to use. Either it will use the color profiles offered using the colorprofile
argument or profileCMYK/RGB/Gray, or it will select the appropriate default color profile.

pages

-pages=[range]
-pages=3
-pages=2,5
-pages=1-10
-pages=1,3,5-9,21
-pages=15-last

Normally, when PDF2IMG processes a PDF document it converts every page found in that document.
Use the -pages option to specify a list of selected input pages to process. You can give single page
numbers, separated by commas; the first and last page of a range, separated by a hyphen; or some
combination of the two.

Pages are identified by their sequential order within the file, not by their folio. For example, you would
specify "2" for the second page of the input file, even if the document identifies it as "Page 57" or "page
xiv" on paper. If you are working with a PDF document that has a cover sheet, a page with copyright data,
and four pages of a table of contents, the first page of the document, page 7, would actually be page 7 in
the file. So, in this case you would specify "7" for page one in this document. Page ranges must be given in
increasing order; don't enter a command like "-pages=15,19-21,5." Do not include spaces.

If you do not know the exact page count of the input file, use the keyword "last" to indicate a page
range that should run to the end.

Page 22

password

-password=[string]
-password=sesame

Use the -password option to pass the User or Owner password needed to open a password-protected PDF
document. The password may be any character string up to 127 characters in length, without spaces.

Note: A document with a User password but no other restrictions can be processed by providing the
User password. If the PDF document has any security beyond a User password to restrict viewing, you
will need to specify its Owner password instead. Opening with an Owner password will override the
document’s security restrictions and allow PDF2IMG conversion to proceed.

pdf-rasterize
-pdf-rasterize

Use this option to rasterize each page in a PDF input document into graphics images and then save these
pages to a single PDF output file.

A rasterized graphic uses pixels, or points of color, to create a bitmapped graphic image, expressed in
Dots per Inch. A common example would be a photograph, presented as a JPG file. Standard PDF
documents are vector documents, where the text or images are based on a mathematical formula.
If you want to convert the pages in a PDF document to a series of graphic files, such as PNG or TIF, you
are said to be “rasterizing” that PDF document.

In effect, with this option PDF2IMG converts the input PDF document into a series of graphic image files,
and then saves these rasterized image files into a single PDF output file.

pdf-rasterize-split
-pdf-rasterize-split

Use this option to rasterize each page in a PDF input document into graphics images and then save these
pages to a series of PDF output files, one PDF output file for each page in the original document.

A rasterized graphic uses pixels, or points of color, to create a bitmapped graphic image, expressed in
Dots per Inch. A common example would be a photograph, presented as a JPG file. Standard PDF
documents are vector documents, where the text or images are based on a mathematical formula.
If you want to convert the pages in a PDF document to a series of graphic files, such as PNG or TIF, you
are said to be “rasterizing” that PDF document.

In effect, with this option PDF2IMG converts the input PDF document into a series of graphic image files,
and then saves each of these image files into a separate PDF output file, one PDF output document for
each page in the PDF source document.

Page 23

pdfregion

-pdfregion=[art | bleed | bounding | crop | media | trim]
-pdfregion=art
-pdfregion=bleed
-pdfregion=bounding
-pdfregion=media
-pdfregion=trim
-pdfregion=0,300,300,0

(Default: crop)

Use the pdfregion option to select a region of the input page or pages in a PDF document to
rasterize. Elements not within the indicated area are ignored and do not appear in output. The values
for pdfregion correspond to page boundary definitions as given in section 14.11.2, "Page Boundaries," in
ISO 32000-1:2008, Document Management-Portable Document Format-Part 1: PDF 1.7, page 627.

This is summarized below.

Region Coverage Area

art Defines the logical extent of the content of the graphic as intended by the page creator. This
is the smallest of margins. With “art” only the graphic itself is exported. No space is
included around the image.

bleed Defines the region where the contents of the page will be clipped. It may include an extra
area surrounding the graphic to allow for the physical limitations of printing equipment. This
value is the second widest margin around the graphics image after media.

bounding Usually the smallest possible rectangle that can hold all of the content on the page (all the
area within the declared bounding dimensions). It is possible for Bounding to include
objects that fall outside the borders of the PDF page such as a particularly wide Bezier curve.

crop (Default) Defines the region for clipping or cropping the graphic for display or print. Unlike
the other settings for region crop has no default defined size or geometry. With the crop
value it is possible to provide additional information to manually define the margins of the
image that are selected and exported. If these values are not provided the crop value will
match the media value.

media Defines the boundaries of the actual page where the graphics image will be printed. In this
case the media setting may include an extended area around the graphic on the printed
page. This area can be used for printing marks on a proof copy for example. The media
value provides the widest possible margins around the graphics image.

trim Defines the intended dimensions of the finished graphic after trimming to fit the page. This
will be smaller than the media and bleed settings but wider than the art setting.

Page 24

It is also possible to create a box with a custom set of four coordinates, [left],[top],[right],[bottom] in
PDF units. The same syntax applies for PDF2IMG and PDF2IMG .NET. In this example, the size and
placement of the box is defined as zero units from the left side of the page, 300 units down from the
top, 300 units in from the right, and zero units up from the bottom:

-pdfregion=0,300,300,0

A PDF unit here is a form of measurement used with PDF documents to define the placement of text of
graphic on a page. There are 72 PDF units per inch.

pdf-split
-pdf-split

This option simply takes a PDF input document and splits it into a series of separate PDF documents, one
PDF document for each page in the source file. The output is not converted into graphics images.

pixelcount

-pixelcount=[width x height]
-pixelcount=w:[width]
-pixelcount=h:[height]
-pixelcount=2550x3300
-pixelcount=660X300
-pixelcount=w:200
-pixelcount=h:300

Use the -pixelcount option to specify the exact dimensions of your output width and/or height in pixels.
Both width and height values are optional, though if you provide both, you must give the width first,
height second, separated by the "x" character. Do not include spaces.

This allows you to scale the image up or down as desired to a specific output size and dimension, and
either maintain the original proportions or override them as you like: you can resize the original input
without alteration or distort it horizontally or vertically as you prefer. If you don’t use the -pixelcount
option PDF2IMG will use the original size of the image when generating output.

If you do not want to alter the proportions or aspect ratio of the page or pages in your original input
document, you should give only one -pixelcount dimension for output, either width or height, whichever
one is more critical for correct output positioning or sizing. The other dimension will be scaled as
necessary to maintain the original aspect ratio of the input PDF file.

Remember that the -resolution argument also affects output size by setting the Dots per Inch value, so be
sure that your -pixelcount and -resolution arguments together will produce the output size that you want.

Note: The limit for JPEG output image size is 65535 x 65535 pixels. TIF output has been tested up to a
band of 68898 x 34449 pixels in size.

Page 25

Using pixelcount for RAW Output

When converting to RAW output, the process will create an output byte stream to generate the page
image according to its original input height and width (the PDF page dimensions), and at the current
resolution value (its default value, unless directed otherwise). However, the image will not contain any
embedded information on its correct dimensions in pixels. Thus, you should specify the desired
pixelcount dimensions yourself, in order to ensure that the output image size is what you expect.

profileCMYK/profileRGB/profileGray

-profileCMYK [file name or description of CMYK input color profile]
-profileRGB [file name or description of RGB input color profile]
-profileGray [file name or description of grayscale input color profile]
-profileRGB=AdobeRGB1998.icc

PDF2IMG offers three command line arguments to select an input color profile, one each for CMYK,
RGB, or grayscale. These input color profile arguments are similar to colorprofile. For example, you
would use the profileCMYK argument to select an input profile for CMYK and the colorprofile or the
outputintent argument to select an output color profile. It is common practice to define both the input
and output profiles when rasterizing a PDF document to a graphic file.

The output color profile is used for rasterizing the PDF document to a bitmap graphics file, or series of
graphics files. The output profile can be added directly to the output file. For example, if you are
converting a PDF document to a series of PNG files, one PNG file per page, you can define an output
color profile and then add that output profile to the metadata for each of those PNG output files. This
applies to PNG and TIFF files; you can’t add color profile metadata to a BMP file.

When you select the input color profile, you are assigning that profile to objects and elements within the
PDF document that do not already have native color profiles assigned to them. PDF2IMG copies your
input color profile to a buffer, and the API calls it from there.

The elements and objects in a PDF document can be specified in a device-specific color space like
DeviceCMYK, or they can be expressly assigned to an ICC color profile. If a color profile is already
assigned to an element in a PDF document, that element is said to be calibrated to that color profile.
PDF2IMG only applies a default color profile to an element in a PDF that is not already calibrated. For
example, suppose a person creates a PDF document and embeds a photograph on one of the pages in
that document. If that person selects an explicit ICC color profile to assign to that photograph, PDF2IMG
will not change it. If the person who creates the PDF does not assign a profile to the image, however
(the image is not already calibrated), PDF2IMG will assign a default input color profile to that image.

You can use profileCMYK, profileRGB, or profileGray, to assign your own input color profile to a document,
and thus override the default color profile provided by PDF2IMG. But these three input color arguments
will also not change the color profile assigned to an element or object that is already calibrated. If you
don’t use one of these three arguments to select a color profile, PDF2IMG will select a default instead.

Page 26

Color Space Default ICC input color profile provided by PDF2IMG
CMYK Adobe Reader 9 CMYK
Gray Gray Gamma 2.2
RGB sRGB

The filename for the input profile argument refers to the ICC color profile file, usually ending with an
“.icc” suffix, as in “HPO63000.icc.” If the program is calling an ICC profile from another directory, provide
the path name for the file as well. PDF2IMG will read the file you provide into a buffer and try to use it
when rasterizing the PDF document. You can also enter the profile description, corresponding to the
description field of the ICC profile you want to use, as in:

“HP OJ 6300-Premium Paper(tri-color+black)”

If you like you can use two or three of these color profile arguments in a single PDF2IMG command
statement to assign separate profiles to individual objects or elements within a PDF document. You
could also include a colorprofile or outputintent argument in the same statement to define the output
profile to assign to the graphic file.

Suppose you have a PDF document with a single page that features grayscale text, a vector line drawing
with a RGB color space, and a photograph (JPEG image) using CMYK. PDF2IMG will convert this PDF page
to a single export graphic file, such as a TIF or PNG file. But you could write a PDF2IMG command
statement that will assign a separate input color profile to each of these graphics, and you could also
add a colorprofile or outputintent argument to define the output color profile. The command might look
something like this:

pdf2img –profileCMYK=Probev1_ICCv4.icc –profileRGB=USWebCoatedSWOP.icc –
colorprofile=AdobeRGB1998.icc TestFile.PDF PNG

In this example, PDF2IMG would convert the PDF document called TestFile.PDF to a single PNG file.

It will assign the color profile Probev1_IDCCv4.icc to the CMYK graphic (the JPEG photograph) in
TestDocument.PDF, and the color profile USWebCoatedSWOP.icc to the RGB vector line drawing. For
the text, PDF2IMG will use its own default Grayscale profile, because the –profileGray argument is not
used in the statement. And it will assign AdobeRGB1998.icc to the PNG output file.

relaxParseSyntax

-relaxParseSyntax

This option can be used to correct a problem where PDF2IMG is not processing a PDF document
properly. It can correct minor PDF syntax errors by relaxing a parsing restriction, allowing the software
to continue to process the PDF document. The option sets the PDPrefSetAllowRelexedSyntax flag to
True; by default, this flag is turned off.

Page 27

removewhitespace

-removewhitespace

This command directs PDF2IMG to remove the white space margins around the content on a page in the
PDF document. Most documents feature black text and color images on a white background. This
option is similar to the Crop feature in Adobe Acrobat, in that you can use it to remove the white space
surrounding an image or block of text on a page. With the removewhitespace option, however,
PDF2IMG determines how much white space to remove for you.

This option does not accept a value.

resampler

-resampler=[auto | bicubic | none]
-resampler=bicubic
-resampler=none

(Default: auto)

If images are converted without resampling, it can in some cases cause unwanted artifacts or loss of
detail in small-sized or low-resolution output images, such as thumbnails. Automatic resampling was
introduced to PDF2IMG to enhance the quality of images when they are converted.

If you use the default value of automatic resampling, if any of the following conditions are true, the
images will first be rasterized to 150 DPI.

After that a bicubic downsampling to the desired target values will be applied:

• -pixelcount:h is less than one half of the default input height
• -pixelcount:w is less than one half of the default input width
• -resolution is less than 150

Specifying bicubic will apply the resampler unconditionally. That is, every image will be resampled
regardless of the pixel count and resolution. Specifying none will turn it off completely, so that the
images will not be resampled at all.

resolution

-resolution=[12 to 2400]
-resolution=600

(Default: 300)

-resolution=[horizontal 12 to 2400 x vertical 12 to 2400]
-resolution=1200x600

(Default: 300x300)

Page 28

Use the -resolution option to set the Dots per Inch value for the output file or files, from 12 to 2400. You
can enter one or two values. If you only provide one value, it will be applied to both horizontal and
vertical, as in 600 x 600. If you provide two values, the first will be applied horizontally and the second
will be applied vertically. Do not include spaces between the numbers in the command line statement.

For best results, provide a value that serves as a multiple of the DPI resolution of the intended output
device. Try to match the resolution of your image file to the device that will display it.

Note: If the specified value is less than 150 and resampling has not been disabled, images will be
resampled for improved appearance during conversion. See “Resampler” for more details. Also see
“PixelCount” for another way to control the specific output size of your image.

reverse

-reverse

(Grayscale only; No default)

If you are converting to grayscale output files, use the -reverse option to direct PDF2IMG to reverse the
grayscale values to produce a "negative" image:

Note: This option is intended for generating reverse or negative images only. If you are trying to correct
a problem of unwanted display reversals seen in documents produced by some third-party PDF
products, use the “blackisone” option instead.

Page 29

smoothing

-smoothing=[none | text | line | image | all]
-smoothing=none
-smoothing=image
-smoothing=line,text
-smoothing=all

(Default: no smoothing)

User-controlled anti-aliasing, or "smoothing," can be controlled individually for text, line art, images, or
any combination as you like. Multiple selections should be separated by commas for PDF2IMG.

The smoothing option for PDF2IMG accepts "none," "text," "line," "image" or "all" values. You can
combine "text," "line" or "image" with commas.

Text Smoothing (1000% Enlargement)

No Smoothing (1000% Enlargement)

Smoothing is most helpful when creating low-resolution outputs. But we don't recommend it if you
want to create image files that you plan to print. It is also not recommended for black-and-white (1bpp)
output files, to preserve sharpness at high magnifications.

Page 30

Color Management
How printers and other hardware present colors will vary from one device to another. Each device
independently defines the colors used. Even if two printers process a shade of green using the same
CMYK color values—Cyan 31, Magenta 0, Yellow 80, Black 5—the appearance of the two printed
documents still might not match.

The lack of a standard for managing color became a problem with the complex technology that started
to appear in the mid-20th century. A wide variety of input devices were introduced by multiple
manufacturers, including scanners, printers, digital cameras, and mobile devices. These devices needed
to communicate with an equally wide variety of output devices, such as monitors, presses, laser, ink jet,
and dot-matrix printers, and copy machines. This created a vast number of possible color conversions
from one hardware device to another.

In response, color management was introduced, using color profiles. The International Color
Consortium (ICC) developed a color specification in 1993 that works across all operating systems and
software packages and applies regardless of the hardware involved. All color profiles are based on this
ICC specification. A color profile is a table that specifies standard values for a range of colors, and that
works as a translation matrix between devices. Any two devices involved in a transaction that requires
content to be printed or displayed will share a color profile and convert their internal color values to
match the standard provided in that profile.

A variety of color profiles have been defined, presented in the form of .icc files. Some of these profiles
are specific to hardware devices, and define what a camera can detect, or a printer print, or a monitor
display. Others are based on software and thus can be used across many kinds of devices. For example,
USWebCoatedSWOP is a standard CMYK color profile, commonly used with Adobe Systems software
products like PhotoShop and InDesign. The standard RGB color space, sRGB, was developed by Microsoft
and Hewlett Packard to describe colors available on most monitors and other displays. This color space
is also commonly used for web graphics. And the Adobe RGB color profile (AdobeRGB1998.icc) was
designed by Adobe Systems to hold all of the colors that are likely to be available on any color CMYK
printer. It is considerably larger than standard RGB.

A single PDF document can support a wide variety of elements using different color models. Often a PDF
file is produced and saved with elements in the DeviceRGB, DeviceCMYK and DeviceGray spaces that
have an associated ICC profile. An element in a PDF that has an associated profile is considered
calibrated. Elements that do not have embedded profiles are considered un-calibrated. PDF processing
software will often assign default profiles (referred to as working spaces) to un-calibrated elements.
Graphics files, however, such as PNG, TIF, or JPEG, can only hold a single color profile. When
PDF2IMG rasterizes a page from a PDF document to create a graphic file, it will assign default profiles for
un-calibrated elements in the PDF, or you can specify the input and output color profiles you want to
use from a stream or file. When PDF2IMG initializes, it identifies the color profiles present in the subject
PDF document, and that are available on the host machine.

Page 31

Conversions with ICC Color Profiles
PDF2IMG will honor calibrated colorspaces in PDF files, if output color management is in effect. The
product will also write target ICC profiles to the TIF, JPEG, PNG, or BMP output files.

Color management can be suppressed using either the Color Management Module nocmm command
line call or the pdf2img_set_colormanagement API call.

For non-calibrated spaces, PDF2IMG will use the defaults provided by the Adobe PDF Library for
conversions, depending on the colorspace.

Default Conversion Color Profiles

Colorspace ICC Color Profile (input) ICC Color Profile (output)

RGB Adobe 1998 RGB sRGB

CMYK Adobe Reader 9 CMYK Adobe Reader 9 or later CMYK, based on Simplified US web
coated SWOP v2

Gray Gamma 2.2 Gamma 2.2

L*a*b

CIE 1976 (L*a*b*) color specification with a D50 white point

Conversions with Missing Resources
When creating a PDF document, the best practice is to embed all the fonts that document will need to
use in the document itself. That way, the software used to open that PDF document (such as Adobe
Reader or Acrobat) does not need to try to find fonts that it needs from the local workstation or laptop
or provide substitutes.

Likewise, before PDF2IMG starts the process to convert a PDF document to a graphic file or series of
graphic files, the product will look for the needed fonts within the PDF document itself.

If the fonts are not embedded in the document PDF2IMG will try to make use of font resources found on
the system. PDF2IMG can use environment variables to determine where to find those font resources.

Or the software can provide its own fonts. PDF2IMG offers internal font and CMap resources that are
shipped with the product. These font resource files are copied to the installation directory for the
PDF2IMG software (where the executable is stored) when you install the product.

Page 32

Font and CMap Location Searches

Providing Custom Locations for Font Files

By default, PDF2IMG looks for fonts installed and used by Adobe products, such as Adobe Acrobat, and will
use them if they are present. However, you can provide your own list of directories to search for font files
(up to 16 local or server file folders) using the optional fontlist command line parameter. The fontlist
option directs the software to look in the directories you provide instead of the default Adobe sites.

After searching the font locations you provide it then searches the font folders provided upon
installation of the product, in the following locations, relative to the present installation directory:

• Resources
• Resources/CMap
• Resources/Font

PDF2IMG searches first in the locations you provide with the fontlist command line option. Any locations
for fonts that you provide using the fontlist argument will supersede another of the same name that
may appear in one of the default locations.

It is important to understand the PDF2IMG can convert a PDF document that references fonts that are
not in fact embedded in that document. But if the software cannot find those fonts on the local
machine, PDF2IMG will substitute its own. The product will not display an error message, but this might
lead to results you might not want, especially if the document is calling fonts with obscure or decorative
typefaces or special symbols. See “Conversions with Missing Resources” on page 31.

Page 33

Multi-Page Processing
By default, PDF2IMG converts the pages in a PDF file into multiple single-page image files. The system
assigns a name to each image file with an underscore character (_) added between the file name prefix
and the sequence counter number. For example, the five pages in a PDF input file called Convert.PDF
would be exported to form five bitmap (BMP) graphic files:

• convert_1.BMP
• convert_2.BMP
• convert_3.BMP
• convert_4.BMP
• convert_5.BMP

If you are working with a long PDF document, the software will by default pad the sequence number
with leading zeroes as needed, to keep the export graphic files in order by name. So if Convert.PDF has
128 pages, the first few BMP export files will be named:

• convert_001.BMP
• convert_002.BMP
• convert_003.BMP

Followed, later, by:

• convert_043.BMP
• convert_044.BMP
• convert_045.BMP

And finally by:

• convert_126.BMP
• convert_127.BMP
• convert_128.BMP

Remember:

1. You can select PDF as your export format for a PDF document, rather than a graphic file format
like PNG or BMP. So if you have a 15-page PDF document and want to use PDF2IMG to export it
to PDF, you can set up the software to provide a series of 15 PDF documents as the export
result. The software will use the page-split feature. To this end you will need to select the
pdf2img_set_pdf_output_type API call, or the command line statement pdf-rasterize-split or
pdf-split.

2. You can use the optional firstonly command line argument to direct PDF2IMG to convert only
the first page of the input PDF file rather than every page in the document. So you can use this
argument to test a conversion before using the product to process a series of very long PDF
documents.

Page 34

3. Or you can use the optional multipage command line argument to convert long, multipage PDF
document into a single multipage TIFF document.

4. Use the optional digits command line argument to specify the number of digits for numbering
the output files and suppress the underscore character (_). For example, if you enter "-
digits=3" as part of a command, the export files generated from your input PDF document will
be named FILE001.JPG, FILE002.JPG, and so on.

5. Finally, use the optional output command line argument to specify an alternate output file name
prefix. The value given here will be used for the output file name, with a sequence number and
an appropriate extension appended to indicate the output file type, such as sample_1.gif and
sample_1.jpg. For a PDF input document with more than one page, the system will create
sequential, separate output files for each page of the input file, with a sequence number
appended to each, such as sample_1.gif, sample_2.gif, sample_3.gif, and so on.

Note: An alternate file folder location can be specified for the output file(s) to be created, but that
folder must already exist; PDF2IMG will not create it.

Page 35

Working with the .NET Interface (Windows 64)
The .NET interface is also provided as part of the Windows 64-bit version of the product.

To use the PDF2IMG interface for .NET follow these steps:

1. Create an instance of the PDF2IMG class.
2. Load your input PDF or XPS document, to be converted to an image file or series of image files.
3. Select the image conversion options you need.
4. Convert each page of the input document to an image file.
5. Dispose of the object.

The public methods provided with the PDF2IMG .NET interface include:

• CheckForMissingAppearances()
• ConvertPageToImage()
• ConvertAllPagesToTIFFImage()
• GetPageBoxWithWhiteSpaceRemoved
• LoadInput()
• SetImageConversionOptions()

For more detail see the description of the API calls for the .NET Interface.

Page 36

Troubleshooting

Problems with Opening a PDF Document

Opening a PDF file for conversion is not the same as opening it for viewing. In some cases, efforts to
secure a PDF document may prevent PDF2IMG from completing the conversion process.

If a PDF document is password protected, you will need to provide that password before PDF2IMG can
work. To that end you can use the optional password command line argument if you are using a console
application.

Or you can use one of these API calls:

• pdf2img_new_conversion_with_password
• pdf2img_new_memconversion_with_password

Also, the PDF document must be set to allow Content Copying and Page Extraction before PDF2IMG can
process it.

Open the file in Adobe Acrobat and click File/Properties, and then the Security Tab. Make sure that
Content Copying and Page Extraction are allowed for this document.

If the Security Method for the file is set to “Password Security,” as shown above, click Show Details.

Page 37

The “Document Open Password” value should be set to No. This means that the file does not have a
Document Open password.

If this value is set to Yes, it means that to open the PDF document you need to enter this Document
Open Password, and you will need to provide this password to PDF2IMG.

PDF2IMG may be able to process a PDF document with a Permissions Password, however, depending on
what Security settings are in force. You can open a PDF document without entering the Permissions
Password, which is used to lock the PDF document so that the security settings for that document
cannot be changed. These settings might include the ability to print the PDF or to insert or delete pages.

If PDF2IMG cannot process a PDF document because of a security or permission problem, you will see
an error message:

return code = 13, The document security settings do not permit this operation

You will need to investigate the document security or permission settings on the PDF document before
continuing.

Problems with High-Resolution Conversions

Large PDF files processed at high resolution settings may cause PDF2IMG to fail; you might see a
message indicating that a raster port could not be created. This typically means that there is not enough
system memory available to generate raster output for the input PDF document. Rasterizing PDF
documents at high resolution requires a lot of free memory.

Page 38

Blurry Text Appears in Output File

When converting a PDF document with a small typeface, such as 8-point Courier, a blocky typeface with
a 1-point stroke width, to TIFF output, the resulting output may appear grainy and pixelated. Some
characters may develop visible gaps despite using the -smoothing command line argument.

When small text is rendered as a TIFF image without any smoothing attempts, the very narrow stroke
thicknesses for the characters are dramatically affected by whether they are squarely aligned over the
image pixels or not. Some legs of the glyphs will be rendered with a single line of pixels, while others will
be drawn with two:

Compare the vertical strokes of the “R” and “I” characters in the upper window above. These characters
have no smoothing. The “R” is centered over the pixel grid and uses one vertical column, while the “I” is
straddling the grid and ends up using two columns. When smoothing is applied, as seen in the lower
window, it limits this effect. If a typeface that uses bold characters or characters that are shaped
differently, especially a typeface without long, straight horizontal or vertical strokes, the problem might
not be visible at all, even without any smoothing.

However, if you add too many arguments to your command line statement you can make matters
worse. In this case, shades of gray will be needed for effective smoothing.

While you could add a Bits per Color channel (-bpc=1) setting to the conversion, we don’t recommend it.

Page 39

In the images above, we see that when the Bits per Color Channel argument is set equal to 1 (-bpc=1)
we lose all the gray values from the smoothing operation. The glyphs end up looking grainy and spotty
as a result.

So, the best configuration for each conversion depends on the details of the document you want to
convert. If you want to convert a document with a fine-grained text that needs a smoothing to preserve
the small type, do not alter it using the “bpc” argument. You need to preserve the gray values necessary
for rendering the characters.

Page 40

Appendix: API Calls, C Language Interface

pdf2img_check_for_missing_appearances
(ImageConversion IC, int firstPage, Int lastPage)

Return	Value:	int	

Description This call checks pages within the specified range for annotations or form fields that
cannot be rendered. It returns a value greater than 0 if the page range contains non-
renderable content or 0 if the page range does not contain non-renderable content.

Parameters ImageConversion iC: the data structure containing the specifications for the active
current conversion

int firstPage: sequence number of first input file page to be inspected counting from 1

int lastPage: sequence number of last input file page to be inspected counting from 1

Return Value int

Exceptions

Header pdf2imglib.h

Related Methods

Availability All platforms

pdf2img_convert_page
(ImageConversion iC, unsigned int pageNum, const char *outputPath)

Return	Value:	int	

Description	 This	call	converts	the	specified	page	of	the	PDF	file.	It	writes	into	the	file	specified	
by	outputPath.	

	
Alternatively	you	can	suppress	writing	an	output	file	by	passing	a	NULL	in	place	of	
an	output	file	argument	and	then	use	a	pdf2img_get_pagemem	call	to	load	the	
converted	graphic	into	memory.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	active	
current	conversion	

	
unsigned	int	pageNum:	sequence	number	of	input	file	page	to	be	converted	
counting	from	1	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagemem

Page 41

	
const	char	*outputPath:	name	of	file	to	receive	converted	output	or	NULL	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_get_pagemem	
pdf2img_get_pagememsize	
pdf2img_release_pagemem	

Availability	 All	platforms	

Technical	Notes	

1. While a NULL argument will suppress writing an output file, note that a work file will be
temporarily created during the conversion process.

2. If the conversion is performed “in memory,” then the ImageConversion will hold the memory for
the conversion until the next call to pdf2img_convert_page, or until pdf2img_release_pagemem
is called.

pdf2img_destroy_conversion
(ImageConversion IC)

Return	Value:	int	

Description	 This	call	frees	the	resources	used	by	this	image	conversion.	After	this	call	has	
been	made	the	ImageConversion	is	no	longer	valid	and	must	not	be	used.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_new_conversion	
pdf2img_new_memconversion	

Availability	 All	platforms	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagememsize
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgreleasepagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgreleasepagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversion

Page 42

pdf2img_end_multipage
(ImageConversion IC)

Return	Value:	int	

Description	 This	call	ends	a	multipage	image	span.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	

	
conversion	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_multipage	
pdf2img_start_multipage	

Availability	 All	platforms	

pdf2img_error_string
(ImageConversion IC)

Return	Value:	const	char	*	

Description	 This	call	returns	an	English-language	string	representing	the	last	error	
encountered	during	PDF	processing.	Do	not	release	this	string.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 const	char	*	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_get_extended_error	
pdf2img_last_error	

Availability	 All	platforms	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetmultipage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgstartmultipage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetextendederror
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imglasterror

Page 43

pdf2img_get_extended_error
(ImageConversion IC)

Return	Value:	const	char	*	

Description	 This	call	returns	a	text	string	indicating	the	last	error	that	occurred	in	a	sub-
component	of	the	application.	Typically,	this	is	an	error	reported	by	the	
Adobe	PDF	Library.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 const	char	*	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_error_string	
pdf2img_last_error	

Availability	 All	platforms	

pdf2img_get_num_pages
(ImageConversion IC)

Return	Value:	int	

Description	 This	call	returns	the	number	of	pages	in	the	PDF	file	to	be	used	for	the	image	
conversion.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 int:	Number	of	pages	to	be	converted.	Returns	-1	in	case	of	error.	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms		

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgerrorstring
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imglasterror

Page 44

pdf2img_get_pagemem
(ImageConversion IC, void *memBuf, unsigned int bufCapacity)

Return	Value:	Int	

Description	 After	pdf2img_convert_page	has	converted	a	graphic	into	memory	(by	
specifying	NULL	in	place	of	its	outputPath	argument)	this	
pdf2img_get_pagemem	call	will	copy	those	results	into	memBuf.	

	
Note	that	memBuf	is	owned	by	the	caller	and	must	have	been	allocated	to	
hold	at	least	bufCapacity	bytes.	

	
The	pdf2img_get_pagememsize		call	can	return	the	necessary	size	for	this	
allocation.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
void	*memBuf:	buffer	allocated	to	receive	the	image	from	memory	

	
unsigned	int	bufCapacity:	size	of	the	allocated	buffer	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_convert_page	
pdf2img_get_pagememsize	
pdf2img_release_pagemem	

Availability	 All	platforms	

pdf2img_get_pagememsize
(ImageConversion IC)

Return	Value:	int	

Description	 After	pdf2img_convert_page		has	converted	a	graphic	into	memory	(by	
specifying	NULL	in	place	of	its	outputPath	argument)	this	call	will	return	the	
number	of	bytes	that	will	be	required	to	hold	the	memory	output.	

	
Results	of	this	call	will	be	needed	to	allocate	the	correct	amount	of	memory	
buffer	for	a	subsequent	call	to	pdf2img_release_pagemem.	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagememsize
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagememsize
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgreleasepagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage

Page 45

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 int:	number	of	bytes	required	to	hold	the	memory	representing	the	graphic	
created	by	pdf2img_convert_page	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_convert_page	
pdf2img_get_pagemem	
pdf2img_release_pagemem	

Availability	 All	platforms		

pdf2img_get_profiledata
(ImageConversion IC)

Return	Value:	char	*	

Description	 If	an	input	image	in	memory	contains	a	color	profile	this	call	will	return	a	
pointer	to	a	string	containing	the	ICC	Profile	data	(or	NULL	if	a	profile	is	not	
present.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 char	*:	pointer	to	a	string	containing	the	ICC	Profile	data	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_get_profilesize	

Availability	 All	platforms	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgreleasepagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetprofilesize

Page 46

pdf2img_get_profilesize
(ImageConversion IC)

Return	Value:	size_t	

Description	 If	an	input	image	in	memory	contains	a	color	profile	this	call	will	return	its	
size	(or	0	if	a	profile	is	not	present).	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 	size_t:	the	size	of	the	ICC	Profile	data	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_get_profiledata	

Availability	 All	platforms	

pdf2img_get_region_remove_white_margins
 (ImageConversion iC, unsigned int pageNum, double* left, double* top, double* right, double* bottom)

Return	Value:	int	

Description Returns coordinates of a tight-fitting bounding box encompassing all text, graphics, and
images on the page. This effectively removes the white margins around the page
(assuming black foreground on white background).

Parameters ImageConversion iC: the data structure containing the specifications for the active
current conversion

unsigned	int	pageNum:	sequence	number	of	input	file	page	to	be	converted	
counting	from	1

double *left: coordinate for left margin of bounding box

double *top: coordinate for top margin of bounding box

double *right: coordinate for right margin of bounding box

double * bottom: coordinate for bottom margin of bounding box

Return Value int

Exceptions

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetprofiledata

Page 47

Header pdf2imglib.h

Related Methods

Availability All platforms

pdf2img_init
(const char *fontDirList[], unsigned int listLen)

Return	Value:	int	

Description	 This	calling	argument	initializes	PDF2IMG	before	use.	If	used	in	a	multi-
threaded	application	each	calling	thread	must	do	its	own	initialization	before	
use.	

Parameters	 const	char	*fontDirList[]:	a	list	of	null-terminated	C	strings	containing	
directories	in	which	PDF2IMG	should	search	for	fonts	and	font	resources	to	
use	when	rasterizing	documents	which	have	non-embedded	fonts	

	
unsigned	int	listLen:	number	of	strings	in	this	list	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_init_ex	
pdf2img_term	

Availability	 All	platforms	

pdf2img_init_ex
(PDF2IMGInitParams *pinitParams)

Return	Value:	int	

Description	 This	calling	argument	initializes	PDF2IMG	before	use	in	the	same	manner	
as	pdf2img_init.	If	used	in	a	multi-threaded	application	each	calling	thread	
must	do	its	own	initialization	before	use.	

	
This	argument	is	an	alternative	to	the	standard	pdf2img_init	call	which	scans	
default	system	font	resource	locations	as	well	as	its	current	directory	at	
startup	time.	That	font	scanning	time	can	be	quite	significant	in	some	
cases	and	this	call	offers	the	option	of	fine-tuning	performance	by	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imginitex
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgterm
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imginit

Page 48

suppressing	the	default	scans	and	by	providing	a	specific	list	of	locations	to	
be	scanned	instead.	

	
When	the	ignoreSysFonts	and	ignoreCurrentDirectory	elements	of	its	
PDF2IMGInitParams	argument	structure	are	set	to	true	(they	default	to	false)	
this	call	will	search	only	the	indicated	font	resource	locations	passed	within	
the	fontDirList	element	and	no	other	locations.	

Parameters	 PDF2IMGInitParams	*pInitParams:	structure	for	passing	a	list	of	font	
resource	locations	to	be	searched	at	startup		

	
along	with	flag	settings	to	prevent	searching	the	current	directory	or	the	
system	fonts	areas.	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_init	
pdf2img_term	

Availability	 All	platforms	

pdf2img_last_error
(ImageConversion IC)

Return	Value:	int	

Description	 This	call	returns	the	last	error	number.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_get_extended_error	

Availability	 All	platforms	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imginit
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgterm
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetextendederror

Page 49

pdf2img_new_conversion
(const char *inPDFPath)

Return	Value:	imageConversion	

Description	 This	call	creates	a	PDF-to-Image	conversion.	Each	is	local	to	the	thread	which	
makes	this	function	call	and	should	not	be	shared	across	threads.	

Parameters	 const	char	*inPDFPath:	path	to	location	of	input	image	file	

Return	Value	 ImageConversion	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_destroy_conversion	
pdf2img_new_conversion_with_password	
pdf2img_new_memconversion	
pdf2img_new_memconversion_with_password	

Availability	 All	platforms	

Technical	Notes	

1. This call maintains an open file handle for the inPDFPath argument.
2. Of the two calls pdf2img_new_conversion and pdf2img_new_memconversion, one or the other

must be called to create an image conversion, but not both.

pdf2img_new_conversion_with_password
(const char *inPDFPath, const char *password)

Return	Value:	ImageConversion	

Description	 This	call	creates	a	PDF-to-Image	conversion	using	the	supplied	password.	
Each	is	local	to	the	thread	which	makes	this	function	call	and	should	not	be	
shared	across	threads.	

Parameters	 const	char	*inPDFPath:	path	to	location	of	input	image	file	
	

const	char	*password:	password	string	for	opening	the	PDF	document	

Return	Value	 ImageConversion	

Exceptions	
	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgdestroyconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversionwithpassword
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversionwithpassword
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversion

Page 50

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_destroy_conversion	
pdf2img_new_conversion	
pdf2img_new_memconversion	
pdf2img_new_memconversion_with_password	

Availability	 All	platforms	

Technical	Notes	
1. This call maintains an open file handle for the inPDFPath argument.
2. A document with a User password but no other security restrictions can be processed by

providing the User password if the document has any security restrictions on it beyond simply a
User password to restrict viewing, you will need to specify its Owner password instead. Opening
with an Owner password will override the document’s security restrictions and allow the
PDF2IMG conversion to proceed.

3. It is safe to call pdf2img_new_conversion_with_password with either a NULL pointer or a
pointer to zero length string in the password In such cases, this call will behave exactly the same
as its non-password counterpart, pdf2img_new_conversion.

4. Of the two calls, pdf2img_new_conversion_with_password and
pdf2img_new_memconversion_with_password, one or the other must be called to create an
image conversion, but not both.

5. The password argument is copied to an internal buffer. The client’s copy may be released after
this.

6. The password must grant the following permissions on the PDF document:

If	using	 Permission	Required	

Any	output	format	 Open	and	Copy	

EPS	output	format	 High	Quality	printing	

Color	management	 Modify	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgdestroyconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversionwithpassword
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversionwithpassword

Page 51

pdf2img_new_memconversion
(const void *inPDFMem, unsigned int numBytes)

Return	Value:	ImageConversion	

Description	 This	call	creates	a	PDF-to-Image	conversion	from	a	buffer	of	bytes.	Each	is	
local	to	the	thread	which	makes	this	function	call	and	should	not	be	shared	
across	threads.	

Parameters	 const	void	*inPDFMem:	pointer	to	location	of	input	image	in	memory	
	

unsigned	int	numBytes:	number	of	bytes	in	this	buffer	

Return	Value	 ImageConversion	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_destroy_conversion	
pdf2img_new_conversion	
pdf2img_new_conversion_with_password	
pdf2img_new_memconversion_with_password	

Availability	 All	platforms	

Technical	Notes	

1. The memory in inPDFMem must be available until pdf2img_destroy_conversion is called for this
conversion; it is not copied by PDF2IMG.

2. Of the two calls pdf2img_new_conversion and pdf2img_new_memconversion, one or the other
must be called to create an image conversion, but not both.

pdf2img_new_memconversion_with_password
(const void *InPDFMem, unsigned int numBytes, const char *password)

Return	Value:	ImageConversion	

Description	 This	call	creates	a	PDF-to-Image	conversion	from	a	buffer	of	bytes	using	the	
supplied	password.	Each	is	local	to	the	thread	which	makes	this	function	call	
and	should	not	be	shared	across	threads.	

Parameters	 const	void	*inPDFMem:	pointer	to	location	of	input	image	in	memory	
	

unsigned	int	numBytes:	number	of	bytes	in	this	buffer	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgdestroyconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversionwithpassword
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversionwithpassword
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgdestroyconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversion

Page 52

	
const	char	*password:	password	string	for	opening	the	PDF	document	

Return	Value	 ImageConversion	

Exceptions	 pdf2img_destroy_conversion	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_new_conversion	
pdf2img_new_conversion_with_password	
pdf2img_new_memconversion	

Availability	 All	platforms	

Technical	Notes	

1. The memory in inPDFMem must be available until pdf2img_destroy_conversion is called for this
conversion; it is not copied by PDF2IMG.

2. A document with a User password but no other security restrictions can be processed by
providing the User password if the document has any security restrictions on it beyond simply a
User password to restrict viewing, you will need to specify its Owner password instead. Opening
with an Owner password will override the document’s security restrictions and allow PDF2IMG
conversion to proceed.

3. It is safe to call pdf2img_new_memconversion_with_password with either a NULL pointer or a
pointer to zero length string in the password In such cases, this call will behave exactly the same
as its non-password counterpart, pdf2img_new_memconversion.

4. Of the two calls pdf2img_new_conversion_with_password and
pdf2img_new_memconversion_with_password, one or the other must be called to create an
image conversion, but not both.

5. The password argument is copied to an internal buffer. The client’s copy may be released after
this call.

If	using	 Permission	Required	

Any	output	format	 Open	and	Copy	

EPS	output	format	 High	Quality	printing	

Color	management	 Modify	

	 	

pdf2img_release_pagemem
(ImageConversion IC)

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgdestroyconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversionwithpassword
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgdestroyconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewmemconversion
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgnewconversionwithpassword

Page 53

Return	Value:	int	

Description	 This	call	releases	the	memory	held	by	the	ImageConversion	for	a	graphic	
converted	"into	memory"	by	pdf2img_convert_page.	This	call	is	required	only	
if	pdf2img_convert_page	was	directed	to	return	its	output	in	memory	instead	
of	to	an	output	file.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_convert_page	
pdf2img_get_pagemem	
pdf2img_get_pagememsize	

Availability	 All	platforms	

pdf2img_set_blackisone
(ImageConversion IC, unsigned short int blackisone)

Return	Value:	int	

Description	 Normal	processing	to	TIFF	output	sets	the	photometric	interpretation	values	
as	black=0;	white=1.	If	calling	pdf2img_set_blackisone	with	a	non-zero	value	
for	the	blackisone	argument	TIFF	photometric	interpretation	will	be	
transposed	such	that	black=1	and	white=0.	

	
This	function	is	for	1-bit	grayscale	TIFF	output	only.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	short	int	blackisone:	

	
0:	black	=	0/white	=	1	or	1	(or	any	non-zero)	

	
black	=	1/white	=	0	

	
(Default	0)	

Return	Value	 Int	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgconvertpage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagemem
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imggetpagememsize
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#_bookmark64

Page 54

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_bpc
(ImageConversion IC, unsigned int bpc)

Return	Value:	int	

Description	 This	call	sets	the	Bits	Per	Channel	(bpc)	value	for	the	output	color	space:	
either	1	(such	as	black	and	white)	or	8.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	int	bpc:	1	or	8	

	
(Default	8)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Page 55

pdf2img_set_color_profile_from_buffer
(ImageConversion IC, void *data, size_t dataSize)

Return	Value:	int	

Description	 This	call	defines	the	color	profile	for	use	with	PDF2IMG	by	selecting	the	
profile	in	a	buffer;	the	contents	of	the	.icc	file	are	stored	in	this	buffer	first.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
void	*data:	pointer	to	the	location	of	the	specified	color	profile	in	memory	

	
size_t	dataSize:	the	number	of	bytes	to	be	read	at	the	pointer	location	

Return	Value	 Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 	pdf2img_set_color_profile_from_description	
pdf2img_set_color_profile_from_output_intent	
pdf2img_set_render_intent	

Availability	 All	platforms	

Technical	Notes	
1. Learn	more	about	color	management.	
2. Any	member	of	this	group	of	functions	can	be	called	repeatedly:	

• pdf2img_set_color_profile_from_buffer
• pdf2img_set_color_profile_from_description
• pdf2img_set_color_profile_from_output_intent

3. A	call	succeeds	if	the	specified	profile	exists,	overriding	a	previous	call	if	necessary.	Thus,	if	
several	output	profiles	are	specified,	pdf2imglib	uses	the	last	one.	Similarly,	if	several	(RGB)	
input	profiles	are	specified,	pdf2imglib	uses	the	last	(RGB)	input	profile.	

4. These	functions	are	for	setting	the	desired	output	color	For	specifying	an	input	profile,	
see	pdf2img_set_input_color_profile_from_description	or	pdf2img_set_input_color_profile_from_
output_intent.	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetrenderintent
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/color-management/
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent

Page 56

pdf2img_set_color_profile_from_description
(ImageConversion IC, const char *description)

Return	Value:	int	

Description	 This	call	defines	the	color	profile	for	use	with	PDF2IMG	by	querying	the	
system	for	the	profile	description.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
const	char	*description:	text	string	of	profile	description	

Return	Value	 Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_color_profile_from_buffer	
pdf2img_set_color_profile_from_output_intent	
pdf2img_set_render_intent	

Availability	 All	platforms	

Technical	Notes	
1. Learn	more	about	color	management.	
2. Any	member	of	this	group	of	functions	maybe	be	called	repeatedly:	

• pdf2img_set_color_profile_from_buffer	
• pdf2img_set_color_profile_from_description	
• pdf2img_set_color_profile_from_output_intent	

3. A	call	succeeds	if	the	specified	profile	exists,	overriding	a	previous	call	if	necessary.	Thus,	if	
several	output	profiles	are	specified,	pdf2imglib	uses	the	last	one.	Similarly,	if	several	(RGB)	
input	profiles	are	specified,	pdf2imglib	uses	the	last	(RGB)	input	profile.	

4. These	functions	are	for	setting	the	desired	output	color	For	specifying	an	input	profile,	
see	pdf2img_set_input_color_profile_from_buffer,	pdf2img_set_color_profile_from_description,	
or	pdf2img_set_color_profile_from_output_intent.	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetrenderintent
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/color-management/
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent

Page 57

pdf2img_set_color_profile_from_output_intent
(ImageConversion IC, const char *description)

Return	Value:	int	

Description	 This	call	defines	the	color	profile	for	use	with	PDF2IMG	by	pulling	it	from	the	
output	intent	stored	in	the	PDF	document.	An	output	intent	is	a	dictionary	
array	in	the	PDF	document	OutputIntents	array.	

	
For	more	detail	see	the	ISO	32000-1:2008	Document	Management-Portable	
Document	Format	section	14.11.5	“Output	Intents”	on	page	633.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
const	char	*description:	text	string	of	profile	description	

Return	Value	 Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_color_profile_from_buffer	
pdf2img_set_color_profile_from_description	
pdf2img_set_render_intent	
pdf2img_set_input_color_profile_from_buffer	

Availability	 All	platforms	

Technical	Notes	
1. Learn	more	about	color	management.	
2. Any	member	of	this	group	of	functions	may	be	called	repeatedly.	

• pdf2img_set_color_profile_from_buffer	
• pdf2img_set_color_profile_from_description	
• pdf2img_set_color_profile_from_output_intent	

3. A	call	succeeds	if	the	specified	profile	exists,	overriding	a	previous	call	if	necessary.	Thus,	if	
several	output	profiles	are	specified,	pdf2imglib	uses	the	last	one.	Similarly,	if	several	(RGB)	
input	profiles	are	specified,	pdf2imglib	uses	the	last	(RGB)	input	profile.	

4. These	functions	are	for	setting	the	desired	output	color	For	specifying	an	input	profile,	
see	pdf2img_set_color_profile_from_buffer,	pdf2img_set_color_profile_from_description	or	
pdf2img_set_input_color_profile_from_output_intent.	

5. An	output	intent	is	a	dictionary	in	the	document’s	OutputIntents	array,	as	described	in	the	PDF	
Reference,	ISO	32000-1:2008,	Document	Management-Portable	Document	Format-Part	1:	PDF	

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=641
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetrenderintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/color-management/
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#_bookmark65
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#_bookmark66
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=641

Page 58

1.7,	section	14.11.5,	page	633.	To	use	an	output	intent’s	color	profile,	pdf2imglib	matches	the	
description	supplied	by	the	client	with	its	dictionary	values	as	follows:	
• use	the	first	embedded	profile	with	the	specified	OutputCondition	value	
• use	the	first	embedded	profile	with	the	specified	OutputConditionIdentifier	value	
• use	the	first	embedded	profile	with	the	specified	S	(subtype)	value	

pdf2img_set_colormanagement
(ImageConversion IC, unsigned short int managecolors)

Return	Value:	int	

Description	 This	call	sets	the	Color	Management	Module	(CMM)	processing	preference	
flag	to	determine	whether	color	profile	information	should	be	embedded	in	
the	output	images.	

	
When	the	managecolors	flag	is	set	to	false	PDF2IMG	will	draw	the	output	to	a	
device	color.	It	will	also	embed	no	profile	in	the	image	written	and	presume	
no	default	color	model	for	input	device	colors.	

	
When	the	managecolors	flag	is	set	to	true	(the	default)	PDF2IMG	assumes	
that	Device	colors	on	input	are	calibrated	as	shown	in	the	Technical	Notes	
table	below.	The	software	also	assumes	a	corresponding	output	profile	to	
match.	When	generating	TIF/JPG/PNG/BMP	output	PDF2IMG	will	embed	the	
corresponding	profile	in	the	output	image.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	short	int	managecolors:	true	or	false	(Default	true)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Technical	Notes	

For non-calibrated spaces, PDF2IMG will use the built-in defaults of its underlying Adobe PDF Library for
conversions, depending on the colorspace.

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=641

Page 59

Default Conversion Color Profiles

Colorspace	 ICC	Color	Profile	(input)	 ICC	Color	Profile	(output)	

RGB	 Adobe	1998	RGB	 sRGB	

CMYK	 Adobe	Reader	9	CMYK	 Adobe	Reader	9	CMYK	
	

(Simplified	US	web	coated	SWOP	V2)	

Gray	 Gamma	2.2	 Gamma	2.2	

pdf2img_set_colorspace
(ImageConversion IC, ColorSpaceCode csCode)

Return	Value:	int	

Description	 This	call	sets	the	output	colorspace.	Not	all	combinations	of	colorspace	with	
output	format	are	valid;	see	Technical	Notes	below	for	more	details.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
ColorSpaceCode	csCode:	Output	colorspace	value:	
	
CMYKcolor	
GRAYcolor	
LABcolor	
RGBcolor	
RGBAcolor	
(Default	RGBcolor)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Page 60

Technical	Notes	

1. When generating EPS output, calls to pdf2img_set_colorspace will have no effect, as the PDF file
is not rasterized during processing.

2. Not all colorspaces are valid for all output See the table below:

Available Output Types per Colorspace

Colorspace Output Type

CMYKcolor	 JPEG	or	TIFF	
GRAYcolor	 BMP/GIF/JPEG/PNG/TIFF	
LABcolor	 TIFF	
RGBcolor	 BMP/GIF/JPEG/PNG/TIFF	
RGBAcolor	 PNG	or	TIFF	

pdf2img_set_compression
(ImageConversion IC, CompressionCode cmCode)

Return	Value:	Int	

Description	 The	call	sets	the	output	compression.	
	

This	function	is	for	TIFF	output	only.	See	Technical	Notes	below.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
CompressionCode	cmCode:	Output	compression	value:	

	
NOcompression	
LZWcompression	
G3compression	
G4compression	
JPGcompression	
(Default	LZWcompression)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Page 61

Technical	Notes	
1. Compression codes are currently examined only when processing TIFF or JPEG graphics that use

DCT compression, PNG graphics that use Flate compression, and GIF graphics that use LZW
compression. BMP graphics are currently not compressed.

2. G3compression and G4compression values are only valid for B/W (1 channel, 1 bit) TIFF images.

pdf2img_set_enhance_thin_lines
(ImageConversion IC, in newVal)

Return	Value:	Int	

Description	 This	call	will	toggle	the	Enhance	Thin	Lines	setting	(as	used	in	Adobe	Reader	
or	Acrobat)	on	or	off	in	the	generated	image.	If	set	to	true	(the	default)	
pdf2imglib	will	generate	thin	line	renderings	as	they	would	appear	when	
generated	by	Reader	or	Acrobat.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
int	newVal:	Set	enhance_thin_lines	flag:	

	
0:	Do	not	set	
1	(or	any	non-zero	positive):	Set	enhance_thin_lines	flag	

	
(Default	1)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Technical	Notes	

This reflects a default rendering setting for enhance_thin_lines. It is intended to match the default
behavior of Adobe Reader and Adobe Acrobat in enhancing thin document lines when rendering. This
call allows you to turn off that behavior if you like.

Page 62

pdf2img_set_horiz_res
(ImageConversion IC, unsigned Int hRes)

Return	Value:	int	

Description	 This	call	sets	the	horizontal	resolution	of	the	output	expressed	in	dots/inch.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	int	hRes:	horizontal	output	resolution	in	dots	per	Valid	range	is	12	
to	2400.	(Default	300)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_vert_res	

Availability	 All	platforms	

pdf2img_set_input_color_profile_from_buffer
(ImageConversion IC, void *data, size_t dataSize)

Return	Value:	Int	

Description	 This	call	defines	the	input	color	profile	for	use	with	PDF2IMG	by	selecting	the	
profile	in	a	buffer.	The	contents	of	the	.icc	file	are	stored	in	this	buffer	first.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
void	*data:	pointer	to	the	location	of	the	specified	color	profile	in	memory	

	
size_t	dataSize:	the	number	of	bytes	to	be	read	at	the	pointer	location	

Return	Value	 Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_input_color_profile_from_description	
pdf2img_set_input_color_profile_from_output_intent	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetvertres
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent

Page 63

pdf2img_set_render_intent	
pdf2img_set_color_profile_from_buffer	
pdf2img_set_color_profile_from_description	

Availability	 All	platforms	

Technical	Notes	
1. Learn	more	about	color	management.	
2. Any	member	of	this	group	of	functions	may	be	called	repeatedly:	

• pdf2img_set_input_color_profile_from_buffer	
• pdf2img_set_input_color_profile_from_description	
• pdf2img_set_input_color_profile_from_output_intent	

3. A	call	succeeds	if	the	specified	(RGB)	input	profile	exists,	overriding	a	previous	call	if	necessary.	
Thus,	if	several	input	profiles	are	specified,	pdf2imglib	uses	the	last	one.	Similarly,	if	several	
output	profiles	are	specified,	pdf2imglib	uses	the	last	output	profile.	

4. These	functions	are	for	setting	the	input	(RGB)	color.	For	specifying	an	output	profile,	see:	
• pdf2img_set_color_profile_from_buffer	
• pdf2img_set_color_profile_from_description	
• pdf2img_set_color_profile_from_output_intent	

pdf2img_set_input_color_profile_from_description
(ImageConversion IC, const char *description)

Return	Value:	int	

Description	 This	call	defines	the	color	profile	for	use	with	PDF2IMG	by	querying	the	
system	for	the	profile	description.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
const	char	*description:	text	string	of	profile	description	

Return	Value	 Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_input_color_profile_from_buffer	
pdf2img_set_input_color_profile_from_output_intent	
pdf2img_set_render_intent	
pdf2img_set_color_profile_from_buffer	
pdf2img_set_color_profile_from_description	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetrenderintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/color-management/
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetrenderintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription

Page 64

Availability	 All	platforms	

Technical	Notes	
1. Learn	more	about	color	management.	
2. Any	member	of	this	group	of	functions	can	be	called	repeatedly:	

• pdf2img_set_input_color_profile_from_buffer	
• pdf2img_set_input_color_profile_from_description	
• pdf2img_set_input_color_profile_from_output_intent	

3. A	call	succeeds	if	the	specified	(RGB)	input	profile	exists,	overriding	a	previous	call	if	necessary.	
Thus,	if	several	input	profiles	are	specified,	pdf2imglib	uses	the	last	one.	Similarly,	if	several	
output	profiles	are	specified,	pdf2imglib	uses	the	last	output	profile.	

4. These	functions	are	for	setting	the	input	(RGB)	color	For	specifying	an	output	profile,	
see	pdf2img_set_input_color_profile_from_buffer,	pdf2img_set_color_profile_from_description	
or	pdf2img_set_input_color_profile_from_output_intent.	

pdf2img_set_input_color_profile_from_output_intent
(ImageConversion IC, const char *description)

Return	Value:	int	

Description	 This	call	defines	the	input	color	profile	for	use	with	PDF2IMG	by	pulling	it	from	the	
output	intent	stored	in	the	PDF	document.	An	output	intent	is	a	dictionary	array	in	
the	PDF	document	OutputIntents	array.	

	
For	more	detail	see	the	ISO	32000-1:2008	Document	Management-Portable	
Document	Format	section	14.11.5	“Output	Intents”	on	page	633.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	active	
current	conversion	

	
const	char	*description:	text	string	of	profile	description	

Return	
Value	

Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	
Methods	

pdf2img_set_input_color_profile_from_buffer	
pdf2img_set_input_color_profile_from_description	
pdf2img_set_render_intent	
pdf2img_set_color_profile_from_buffer	
pdf2img_set_color_profile_from_description	

https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/color-management/
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromoutputintent
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=641
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetrenderintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription

Page 65

Availability	 All	platforms	

Technical	Notes	
1. Any	member	of	this	group	of	

functions	pdf2img_set_input_color_profile_from_buffer,	pdf2img_set_input_color_profile_from_d
escription	and	pdf2img_set_input_color_profile_from_output_intent	may	be	called	repeatedly.	A	
call	succeeds	if	the	specified	(RGB)	input	profile	exists,	overriding	a	previous	call	if	necessary.	
Thus,	if	several	input	profiles	are	specified,	pdf2imglib	uses	the	last	one.	Similarly,	if	several	
output	profiles	are	specified,	pdf2imglib	uses	the	last	output	profile.	

2. These	functions	are	for	setting	the	input	(RGB)	color	For	specifying	an	output	profile,	
see	pdf2img_set_color_profile_from_buffer,	pdf2img_set_color_profile_from_description	or	pdf2i
mg_set_color_profile_from_output_intent.	

3. An	output	intent	is	a	dictionary	in	the	document’s	OutputIntents	array,	as	described	in	the	PDF	
Reference,	ISO	32000-1:2008,	Document	Management-Portable	Document	Format-Part	1:	PDF	
1.7,	section	14.11.5,	page	633.	To	use	an	output	intent’s	color	profile,	pdf2imglib	matches	the	
description	supplied	by	the	client	with	its	dictionary	values	as	follows:	
• use	the	first	embedded	profile	with	the	specified	OutputCondition	value	
• use	the	first	embedded	profile	with	the	specified	OutputConditionIdentifier	value	
• use	the	first	embedded	profile	with	the	specified	S	(subtype)	value	

pdf2img_set_max_band_memory
(ImageConversion IC, unsigned int newVal)

Return	Value:	int	

Description	 PDF2IMG	checks	to	see	if	it	has	enough	memory	to	rasterize	a	PDF	page	to	
JPEG	or	TIF	in	one	pass.	If	not,	it	rasterizes	the	page	in	bands	(strips)	in	order	
to	use	smaller	chunks	of	memory.	Then	the	software	reassembles	the	bitmaps	
into	the	finished	output	image.	This	call	allows	you	to	change	the	threshold	
value	for	the	band	rasterization	process	setting	the	size	in	bytes	above	which	
a	banding	conversion	will	be	performed	instead	of	attempting	a	single	full-
page	conversion	in	one	step.	

Parameters	 	ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	int	newVal:	number	of	bytes	for	the	threshold	above	which	
banded	conversion	will	be	used.	

	
from	1000000	(one	million)	to	4200000000	(4.2	billion)	with	a	default	of	
300000000	(300	million)	

Return	Value	 Int	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetinputcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromoutputintent
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=641
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=641

Page 66

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Technical	Notes	
1. You	will	typically	not	need	the	-maxbandmem	and	pdf2img_set_max_band_memory	calls;	the	

banding	process	is	automatic	and	used	only	when	needed,	based	on	input	page	size	and	
available	memory.	

2. The	limit	for	JPEG	output	image	size	is	65535	x	65535	TIF	output	has	been	tested	up	to	a	band	of	
68898	x	34449	pixels	in	size.	

3. The	maximum	allowed	value	for	-maxbandmem	as	coded	in	the	sample	driver	program	pdf2img	
is	approximately	2100000000	(2.1	billion),	due	to	the	ASCII-to-integer	conversion	process	
within	the	Higher	values	are	allowed	if	passed	in	through	this	pdf2img_set_max_band_memory	
API	call.	

pdf2img_set_multipage
(ImageConversion IC, unsigned short int multipage)

Return	Value:	Int	

Description	 If	a	non-zero	multipage	value	is	provided	as	the	second	argument	in	this	call	
pdf2imglib	will	create	multipage	TIFF	output	files.	Each	converted	PDF	page	
will	correspond	to	a	page	in	the	multipage	TIFF	output.	

	
This	function	is	for	TIFF	output	only.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	short	int	multipage:	Multipage	output	flag:	

	
0:	Single-page	output	

	
1	(or	any	non-zero):	Multipage	output	(Default	0)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/arguments-and-options/#Maxbandmem

Page 67

Related	Methods	 pdf2img_end_multipage	
pdf2img_start_multipage	

Availability	 All	platforms	

pdf2img_set_OPP
(ImageConversion IC, int newVal)

Return	Value:	Int	

Description	 This	call	will	toggle	OverPrint	Preview	(OPP)	on	or	off	in	the	generated	
image.	If	set	to	true	pdf2imglib	will	generate	a	graphic	that	represents	what	
the	input	PDF	page	would	look	like	after	being	printed.	It	will	account	for	ink	
overprinting.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
int	newVal:	Set	OPP	flag:	

	
0:	Do	not	set	

	
1	(or	any	non-zero	positive):	Set	OPP	flag	(Default	0)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_output_region
(ImageConversion IC, PDFRegionCode rCode)

Return	Value:	Int	

Description	 This	call	specifies	the	region	of	the	PDF	page	which	may	be	rasterized.	
	

All	regions	except	BOUNDINGbox	are	defined	in	the	"Page	Boundaries"	
section	in	the	PDF	Reference.	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgendmultipage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgstartmultipage

Page 68

	
See	ISO	32000-1:2008	Document	Management-Portable	Document	Format-
Part	1:	PDF	1.7	section	14.11.2	page	627.	The	BOUNDINGbox	region	is	the	
area	enclosing	all	visible	page	markings.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
PDFRegionCode	rCode:	Region	of	PDF	page	to	rasterize:	
CROPbox	
MEDIAbox	
ARTbox	
TRIMbox	
BLEEDbox	
BOUNDINGbox	(Default	CROPbox)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Technical	Notes	

PDFRegionCode: rCode values below represent the following regions of the PDF page. For full details on
all values for PDFRegionCode rCode except BOUNDINGbox. See the “Page Boundaries” section in the
PDF Reference, ISO 32000-1:2008 Document Management-Portable Document Format-Part 1: PDF 1.7,
section 14.11.2, page 627.

Page	Boundary	Values	and	Areas	
	

PDF	Region	 Description	 Default	Value	

CROPBox	 Region	to	which	the	contents	of	the	page	are	to	be	
clipped	(cropped)	when	displayed	or	printed	

None	

MEDIAbox	 Dimensions	of	physical	medium	on	which	the	page	is	to	
be	printed.	This	includes	any	extended	areas	
surrounding	the	finished	page	for	bleed	or	printing	
marks	or	other	purposes.	

None	

ARTbox	 Extent	of	the	page's	meaningful	content	(including	
potential	white	space)	as	intended	by	the	page's	creator.	

Page's	Crop	Box	

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=635
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=635
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf#page=635

Page 69

PDF	Region	 Description	 Default	Value	

TRIMbox	 Intended	dimensions	of	the	finished	page	after	trimming	 Page's	Crop	Box	

BLEEDbox	 Region	to	which	page	contents	should	be	clipped	when	
output	in	a	production	environment.	May	include	extra	
bleed	area	needed	to	accommodate	physical	limitations	
of	cutting	folding	and	trimming	equipment.	

Page's	Crop	Box	

BOUNDINGbox	 Area	enclosing	all	visible	page	markings	 None	

pdf2img_set_output_type
(ImageConversion IC, OutputTypeCode oCode)

Return	Value:	Int	

Description	 This	call	specifies	the	output	graphic	type	or	types	into	which	PDF2IMG	will	
convert	the	document.	See	Technical	Notes	below.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
OutputTypeCode	oCode:	Desired	output	graphic	format	for	conversion:	

	
EPSoutput	
TIFFoutput	
JPEGoutput	
BMPoutput	
PNGoutput	
RAWoutput	
GIFoutput	
(No	Default)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Technical	Notes	

Page 70

If specifying GIFoutput as one of a group of two or more calls to pdf2img_set_output_type, specify
GIFoutput last. Some internal functions assume that the GIF output format is always the last item in a
list of multiple formats.

Output	Format	 Output	Code	 Format	Description	

EPS	 EPSoutput	 Encapsulated	PostScript	

TIFF	 TIFFoutput	 Tagged	Image	File	Format	

JPEG/JPG	 JPEGoutput	 Joint	Photographic	Experts	Group	

BMP	 BMPoutput	 Bitmap	

PNG	 PNGoutput	 Portable	Network	Graphics	

RAW	 RAWoutput	 Uncompressed	format	

GIF	 GIFoutput	 Graphics	Interchange	Format	

pdf2img_set_pdf_output_type
(ImageConversion IC, PDFOutputType pCode)

Return	Value:	Int	

Description	 If	selecting	PDF	as	the	output	file	type,	select	the	method	to	use	in	generating	
the	PDF	output	file	or	files.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
PDFRegionCode	pCode:	Method	for	generating	PDF	
output	content:	

	

	 Rasterize	 Rasterize	each	page	in	the	PDF	source	document	and	
create	a	single	PDF	output	file.	(Default)	

	 RasterizeAndSplit	 Rasterize	each	page	in	the	PDF	source	document	and	
export	every	rasterized	page	to	a	separate	PDF	output	file.	

	 Split	 Generate	PDF	output	without	rasterizing	the	source	
content.	Create	a	single	PDF	output	file	for	each	page	in	
the	input	document.	

Return	Value	 Int	

Exceptions	
	

Page 71

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_quality
(ImageConversion IC, unsigned int quality)

Return	Value:	Int	

Description	 For	JPG/JPEG	output	format	the	value	set	via	this	call	will	determine	the	
output	image	quality.	It	represents	the	balance	you	want	between	generating	
a	small	output	file	(but	a	low-resolution	image)	versus	a	high-resolution	
image	(but	a	large	output	file).	Valid	quality	values	range	from	1	to	100.	The	
smallest	file	would	be	1	and	100	would	be	for	the	highest	quality	image.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	int	quality:	Desired	output	image	quality	from	1	to	100	(Default	
75)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

Technical	Notes	

Lowering the quality value will not only lower the detail of the image, but also lower the precision of the
colors (as compared with the original input). For example, rendering a JPEG image at 50% quality rather
than some value significantly higher may yield a result that not only shows less detail but also contains
slightly different shades of color.

Page 72

pdf2img_set_render_intent
(ImageConversion IC, RenderIntent riCode)

Return	Value:	Int	

Description	 This	call	sets	the	rendering	intent	for	the	ICC	profile.	If	a	profile	is	supplied	
the	value	defaults	to	the	rendering	intent	provided	within	that	ICC	profile.	If	
the	profile	is	not	supplied	the	intent	defaults	to	perceptual.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	
RenderIntent	riCode:	one	of	the	five	intent	values	available	to	choose	from	

	
perceptual	
relative	
saturation	
absolute	
profile	

Return	Value	 Int:	0	for	success	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_color_profile_from_buffer	
pdf2img_set_color_profile_from_description	

Availability	 All	platforms	

Technical	Notes	

The riCode parameter offers five intent values to choose from: perceptual, relative, saturation, absolute
or profile.

Intent	Values	

perceptual Generally used for photography. This method does not map colors one for one.
Rather the method estimates to match colors. Hence it often provides the most
pleasing result but not necessarily the most accurate. If you do not specify a
color profile in the colorprofile option the intent value defaults to perceptual.

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/arguments-and-options/#colorprofile
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/arguments-and-options/#intent

Page 73

relative Generally used for photography. The relative method uses an algorithm to
select the closest possible color map to be true to the specified color.

saturation Commonly used in charts and diagrams with a limited palette of colors. The
saturation is used where hue is not as important.

absolute Often used to select a specific color or set of colors for drawings or designs. For
PDF2IMG absolute will serve to reproduce the exact colors provided in the
original PDF document. A common reason for using absolute would be to
reproduce the color used in a corporate logo such as IBM Blue. The color is
changed by selecting a defined match. This method does not use a
conversion algorithm to select the closest color available.

profile If you specify a color profile via either pdf2img_set_color_profile_from_buffer
or pdf2img_set_color_profile_from_description the riCode value defaults to
profile. In that case PDF2IMG will use the rendering intent provided with the
ICC color profile currently in use. For example, the Adobe RGB 1998 color
profile uses Relative Colorimetric as its rendering intent. So if PDF2IMG specifies
Adobe RGB 1998 as the color profile, and you don’t enter a value via
pdf2img_set_render_intent, the product will use relative as the color rendering
intent.

pdf2img_set_resampler
(ImageConversion IC, ResamplerCode rsCode)

Return	Value:	Int	

Description	 Originally	PDF2IMG	would	convert	images	without	resampling.	In	some	cases	
would	cause	unwanted	artifacts	or	loss	of	detail	in	smaller	or	low-resolution	
output	images	such	as	thumbnails.	

	
Automatic	resampling	was	introduced	to	enhance	the	quality	of	images	when	
they	were	converted.	

	
If	you	use	the	default	value	of	AutoResampler	and	if	any	of	the	following	
conditions	are	true	images	will	first	be	rasterized	to	150	PPI.	After	that	a	
bicubic	downsampling	to	the	desired	target	values	will	be	applied:	

	
-pixelcount:h	is	less	than	one	half	of	the	default	input	height	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefrombuffer
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetcolorprofilefromdescription
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/arguments-and-options/#pixelcount

Page 74

	
-pixelcount:w	is	less	than	one	half	of	the	default	input	width	

	
-resolution	is	less	than	150	

	
Specifying	an	rsCode	of	BicubicResampler	will	apply	the	resampler	
unconditionally.	Specifying	NoResampler	will	turn	it	off	completely	for	output	
consistent	with	prior	releases	of	PDF2IMG.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
ResamplerCode	rsCode:	DSelected	resampler	setting	(Default	
AutoResampler)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_reverse
(ImageConversion IC, unsigned short int reverse)

Return	Value:	Int	

Description	 If	a	positive	non-zero	reverse	value	is	provided	as	the	second	argument	in	this	
call	pdf2imglib	will	reverse	black	and	white	in	the	output	image	creating	a	
negative	image.		This	function	is	for	grayscale	output	only.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	short	int	reverse:	Reverse	output	flag:	

	
0:	Do	not	reverse	

	
1	(or	any	non-zero	positive):	Reverse	output	black/white	values	

	
(Grayscale	output	only;	Default	0)	

Return	Value	 Int	

https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/arguments-and-options/#resolution

Page 75

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_size_pixels
(ImageConversion IC, unsigned Int hPixels, unsigned Int vPixels)

Return	Value:	Int	

Description	 This	call	sets	the	page	conversion	to	emit	an	image	of	exactly	hPixels	wide	
and	vPixels	tall.	This	call	does	not	affect	the	image	resolution	but	only	the	
output	size.	Only	one	argument	is	required;	the	other	argument	can	be	zero	
(0)	which	will	automatically	scale	the	image	proportionately	using	whichever	
value	was	given	as	a	fixed	dimension	and	floating	the	size	of	the	other	
dimension	as	needed	(No	Default).	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	int	hPixels:	desired	horizontal	output	width	in	pixels	(or	0)	

	
unsigned	int	vPixels:	desired	vertical	output	height	in	pixels	(or	0)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_smoothing
(ImageConversion IC, unsigned short Int Smoothing)

Return	Value:	Int	

Description	 This	call	sets	Smoothing	flags	as	desired	for	Text	or	Line	Art	and/or	Image	
Smoothing.	All	settings	are	independent;	valid	values	for	this	call	are	a	logical	
OR	of	SmoothingCode	values.	For	full	Smoothing	operation	set	all	flags.	

Page 76

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	short	int	Smoothing:	logical	OR	of	available	Smoothing	flags:	

	
PDFSmoothNone:	None	
PDFSmoothText:	Text	Smoothing	
PDFSmoothArt:	Line	Art	Smoothing	
PDFSmoothImage:	Image	Smoothing	
(No	Default)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_vert_res
(ImageConversion IC, unsigned Int vRes)

Return	Value:	Int	

Description	 This	call	sets	the	vertical	resolution	of	the	output	expressed	in	dots/inch.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	int	vRes:	vertical	output	resolution	in	dots	per	Valid	range	is	12	to	
2400.	(Default	300)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_set_horiz_res	

Availability	 All	platforms	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsethorizres

Page 77

pdf2img_setasprinted
(ImageConversion IC, Int newVal)

Return	Value:	Int	

Description	 By	default	a	rendered	page	is	converted	to	an	image	as	it	would	be	shown	
on	screen	but	not	on	paper.	Non-printing	annotations	will	be	shown	and	
printable	annotations	will	not.	

	
This	call	will	set	the	asprinted	flag	and	reverse	those	distinctions:	the	image	
will	represent	the	PDF	page	in	its	printed	form	and	printable	annotations	
will	appear.	Non-printing	annotations	(those	only	used	for	display	on	a	
screen)	will	be	suppressed.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	
the	active	current	conversion	

	
int	newVal:	Set	asprinted	flag:	

	
0:	Do	not	set	

	
1	(or	any	non-zero	positive):	Set	asprinted	flag	(Default:	0)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_setprintannot	

Availability	 All	platforms	

Technical	Notes	
This	command	can	be	overridden	by	the	pdf2img_setprintannot	

pdf2img_setprintannot
(ImageConversion IC, Int newVal)

Return	Value:	Int	

Description	 As	with	the	command-line	-noannot	flag	this	call	adds	the	capability	to	
suppress	displayable	annotations	from	the	converted	output.	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetprintannot
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetprintannot
https://dev.datalogics.com/datalogics-pdf-to-image/running-pdf-to-image/arguments-and-options/#noannot

Page 78

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	
the	active	current	conversion	

	
int	newVal:	Call	with	0	value	to	suppress	annotations	(No	Default)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_setasprinted	

Availability	 All	platforms	

Technical	Notes	

1. This command should be used with Many page objects can be various forms of annotation,
some more obvious than others, so you should check your output carefully to ensure that you
are suppressing only those annotations that you want to block, and no others.

2. This command will override the pdf2img_setasprinted setting.

pdf2img_start_multipage
(ImageConversion IC, const char *ImageName)

Return	Value:	Int	

Description	 This	call	will	start	multipage	TIFF	output	of	the	current	input	PDF	
document	rather	than	the	default	of	single-page	sequentially-	named	
output	files.	(TIFF	only;	No	default)	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	
the	active	current	conversion	

	
const	char	*imageName:	File	prefix	to	be	assigned	to	output	TIFF	file	
name	produced	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_end_multipage	
pdf2img_set_multipage	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetasprinted
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetasprinted
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgendmultipage
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imgsetmultipage

Page 79

Availability	 All	platforms	

pdf2img_term ()

Return	Value:	Int	

Description	 This	calling	argument	terminates	PDF2IMG	after	use.	If	used	in	a	multi-
threaded	application	each	calling	thread	must	do	its	own	termination	after	
use.	

Parameters	
	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	 pdf2img_init	
pdf2img_init_ex	

Availability	 All	platforms	

pdf2img_verify_options
(ImageConversion IC)

Return	Value:	Int	

Description	 This	call	verifies	that	the	conversion	options	supplied	are	valid	in	context.	If	
so	a	zero	(0)	is	returned;	if	any	are	not	valid	a	non-zero	value	is	returned.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

Return	Value	 Int:	0	if	conversion	options	are	valid;	non-zero	if	any	are	not	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imginit
https://dev.datalogics.com/datalogics-pdf-to-image/appendix-api-calls/#pdf2imginitex

Page 80

pdf2img_version_string()

Return	Value:	const	char	*	

Description	 This	call	returns	a	string	representation	(in	English)	of	the	pdf2imglib	
version	in	use.	Do	not	release	this	string.	

Parameters	
	

Return	Value	 const	char	*:	Current	pdf2imglib	version	in	use	

Exceptions	
	

Header	 pdf2imglib.h	

Related	Methods	
	

Availability	 All	platforms	

pdf2img_set_split_layers
(ImageConversion IC, unsigned short int newVal)

Return	Value:	int	

Description	 Split	the	document	by	Layers	into	separate	output	images.	
	

This	function	is	for	TIFF,	JPEG,	PNG,	GIF,	or	BMP	output	only.	

Parameters	 ImageConversion	iC:	the	data	structure	containing	the	specifications	for	the	
active	current	conversion	

	
unsigned	short	int	newVal:	

	
0	-	Don’t	split	by	Layers	

	
1	-	Split	by	Layers	

	
(Default	0)	

Return	Value	 Int	

Exceptions	
	

Header	 pdf2imglib.h	

Page 81

Related	Methods	
	

Availability	 All	platforms	

Page 82

Appendix: API Calls, .NET Interface
We start with a description of the PDF2IMG constructor. The call opens with the PDF2IMG constructor,
followed by LoadInput and one or more of the other method statements.

PDF2IMG
PDF2IMG(IList fonts = null, Boolean ignoreSystemFonts = false, Boolean
ignoreCurrentDirectory = false)

The PDF2IMG constructor creates a new instance of the PDF2IMG class.

Fonts An optional parameter that specifies the list of local directories for the system
to search to find font files and other resources. Defaults to null; provide a list
of strings to define the directories as needed.

ignoreSystemFonts This optional parameter is set to tell PDF2IMG to ignore the system font
directories. Normally PDF2IMG will scan the default system resource
directories to find font files that are stored locally, such as .otf, .ttf, and .cmap
files. This process begins when the system starts, but the font scanning takes
time. This option allows you to turn off the search process if it is not needed
for a given PDF document or set of PDF documents. You can also direct
PDF2IMG to search in a specific set of locations instead, a set of locations that
you provide, defined using the Fonts parameter described above.

ignoreCurrentDirectory This optional parameter is set to direct PDF2IMG to ignore the current
directory when searching for font files.

An exception may be thrown if there is a problem in initializing the system.

Note that you can build your own executable file for PDF2IMG. But if you are working with an evaluation
version of PDF2IMG, you must generate a license file, and store that license file in the same directory
where you place your executable file. For more details on working with license files, see “Licensing” on
page 2.

Page 83

LoadInput
LoadInput(Byte[] inputBuffer, String userPassword = null)

This method loads the input PDF or XPS document into PDF2IMG.

inputBuffer The memory buffer containing the input document to be imported into
PDF2IMG.

userPassword An optional parameter to hold the password of the PDF document if a
password is required for the document to be opened.

This method returns the number of pages in the input file after it is loaded. An exception may be
thrown if a problem appears in loading the document.

CheckForMissingAppearances
CheckForMissingAppearances(UInt32 firstPage, UInt32 lastPage)

This method checks pages within the specified range for annotations or form fields that cannot be
rendered.

Define a range of page numbers for pages to be checked using the firstPage and lastPage parameters.

The method returns the number of appearances that cannot be rendered in an export graphics file. An
annotation may specify one or more appearance streams that define how the annotation appears to a
user. For example, a form field could change color if the user rolls the cursor over the field, or a link
could change color after it is clicked.

An exception may be thrown if an error occurs while looking through appearances.

ConvertPageToImage
ConvertPageToImage(UInt32 pageNumber, String outputPath)

This method converts a specified page in a PDF document to an output image file, such as JPEG, using
the Image Conversion Options that were previously set. The ImageConversionOptions class defines the
available options.

pageNumber Page to be converted

outputPath Path of the image to be created

Page 84

An exception may be thrown if a problem appears in converting the page to an image, or if the Image
Conversion Options are not valid.

ConvertAllPagesToTIFFImage
ConvertAllPagesToTIFFImage(String outputPath)

This method converts all of the pages in a PDF input document to a single multi-page TIFF image file.
Each page is stored in memory before it is converted.

outputPath The local path and file name where the output TIFF image file will be saved.

An exception may be thrown if a problem appears in converting any of the pages in the PDF document
to TIFF, or if the Image Conversion Options are not valid.

GetPageBoxWithWhiteSpaceRemoved
GetPageBoxWithWhiteSpaceRemoved()

This method retrieves four sets of coordinates—top, left, right, and bottom—for a CustomRegion on a
page. These coordinates could be used to form a tight-fitting bounding box around all of the text, graphics,
and images on the page, so that the white margins around the content on the page could be removed.

SetImageConversionOptions
SetImageConversionOptions(ImageConversionOptions options)

Use this method to define the Image Conversion Options to be used when converting a PDF document
to graphic image file output. An exception may be thrown if the Image Conversion Options are not valid.

Use the “options” parameter to define the conversion options. The ImageConversionOptions class
defines the available options.

outputType The file format of the output image created. The default value is TIFF.
Other values include EPS, JPG, BMP, PNG, RAW, PDF, and GIF.

pdfOutputType If selecting PDF as the output file type, select the method to use in
generating the PDF output file or files. This can be Rasterize,
RasterizeAndSplit, or Split. Rasterize means that all of the pages in the
PDF source document are converted into image files and then the
content is output as a single PDF document. For RasterizeAndSplit, the
pages in the source file are rasterized, and then output as separate

Page 85

individual PDF documents, one per page. Split means that the source
PDF document is simply converted into a series of individual PDF
documents, one per page, but the output is not rasterized. The
default is Rasterize.

bitsPerChannel The Bits Per Channel of the output image created. Defaults to 8.

horizontalResolution The horizontal resolution of the output image created. The default
value is 300 dots per inch. Valid values are between 12 and 2400.

verticalResolution The vertical resolution of the output image created. The default value
is 300 dots per inch. Valid values are between 12 and 2400.

colorSpace The Colorspace of the output image created. The default value is
RGB. Others include Gray, RGBA, CMYK, and LAB.

tiffConversionOptions The options available for creation of the output TIFF. The options
include setting the blackisone reference value (which is rarely
used) and selecting a compression method, which defaults to lzw.
Other compression options include None, G3, G4, and JPEG.

If you want more detail, see the description of the blackisone optional
command line argument. The concepts related to blackisone used
here for the tiffConversionOptions option within the
SetImageConversionOptions method in the .NET Interface are the
same as described for the PDF2IMG C language interface.

jpegConversionOptions The options available for creation of the output JPEG. This includes
the output image quality; either a small output file with low
resolution, or a larger file that has higher resolution. The quality value
can range from 1 to 100, with the default set to 75. A file with a
quality value of 100 would be the highest quality image possible.

overPrintPreview Whether or not ink overprinting is applied to the output image
created. If set to True the software will generate a graphic that
represents what the input PDF page would look like after being
printed and will account for ink overprinting. Defaults to false.

regionOfInterest The region of the page rasterized for the output image created. The
default value is CropBox. Other options include MediaBox, Artbox,

Page 86

Trimbox, Bleedbox, BoundingBox, and CustomBox. If you select
CustomBox you need to define coordinates in customRegion.

outputColorProfileOptions The options used for the Output Color Profile of the output image
created.

inputColorProfileOptions The options used for the Input Color Profile of the output image
created.

useColorManagement Sets whether color management is used during creation of the output
image. The default value is true.

enhanceThinLines Sets whether thin lines are generated in the generated output image.
The default value is true, to generate thin line renderings as they
would appear when generated by Adobe Reader or Acrobat.

resamplerUsed Sets whether resampling is used in creation of the output image. The
default value is Auto. Other options include Bicubic or none.
Resampling is a method used to resize graphics image files, such as
JPEG or PNG. The resampling process tends to create a smoother
image when the image size increases or decreases. To increase the
size of the image, more pixels are added to the image, and pixels are
removed from an image to make it smaller. In each case the image
loses resolution.

reverseGrayscale Sets whether grayscale should be reversed in the created output
image. The default value is false.

asPrinted Sets if the document should be converted as if it was being printed
when creating the output image. The default value is false.

printAnnotations Sets if displayable annotations are suppressed the output image. The
default value is false, annotations should be printed.

ouputWidth The width of the output image created, in pixels. Defaults to 0.

outputHeight The height of the output image created, in pixels. Defaults to 0.

smoothing Smoothing used for the output image created. Smoothing, or anti-
aliasing, is useful when creating low resolution outputs. The default
value is All. Other options include none, text, line art, or image.

Page 87

thresholdForBandRasterization The threshold in bytes to use for determining if rasterization should
be done in bands in order to use less memory. PDF2IMG checks to see
if it has enough memory to rasterize a PDF page to JPEG or TIF in one
pass. If not, it rasterizes the page in bands (strips) in order to use
smaller chunks of memory. Then the software reassembles the
bitmaps into the finished output image. This setting allows you to
change the threshold value for the band rasterization process by
defining the maximum size, in bytes. An image with a size greater than
this value will be rasterized in a banding conversion, rather than
attempting a single full-page conversion in one step. The default value
is 300000000, or 30 million bytes. This is only applicable for TIFF or
JPEG output.

customRegion

SplitByLayers

The custom region of the page rasterized for the output image
created. When defining a region to rasterize on an input page, rather
than using a standard value like cropbox or mediabox , it is possible to
define a custom region for rasterizing by providing a set of four
coordinates, [left],[top],[right],[bottom] in PDF units. Provide these
coordinates in customRegion if you define regionOfInterest to be
CustomBox.

Split the document by Layers into separate output images.

This is for TIFF, JPEG, PNG, GIF, or BMP output only.

