
Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

ADOBE SYSTEMS INCORPORATED
Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704

(408) 536-6000

Draft17-023 November 2019

Using Adobe PDF
Converter SDK

Version 3.2

Copyright 2019 Adobe Systems Incorporated and its licensors. All rights reserved.

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Adobe® PDF Converter SDK Version 3.2 User Guide.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in
it, is furnished under license and may be used or copied only in accordance with the terms of such license. Except as
permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe
Systems Incorporated. Please note that the content in this guide is protected under copyright law even if it is not distributed
with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under
copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the
copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer
to any actual organization.

 This product contains either BSAFE and/or TIPEM software by RSA Security, Inc.
Notices, terms and conditions pertaining to third party software are located at http://www.adobe.com/go/thirdparty/
and incorporated herein by reference.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined
at 48
C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as
such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48
C.F.R.
§§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer
Software Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b) with
only those rights as are granted to all other end users pursuant to the terms and conditions herein. Unpublished rights
reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws
including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans
Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and
the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations
contained in the preceding sentence shall be incorporated by reference.

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

http://www.adobe.com/go/thirdparty/

Using Adobe PDF Converter SDK iii

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Part I: Adobe PDF Converter SDK Concepts

Chapter 1 About Adobe PDF Converter SDK 10

1.1 Overview . 10
1.2 Comparing Adobe PDF Converter SDK and Distiller . 13
1.3 Support of UNICODE Character Strings . 22

Chapter 2 New in this release: APC 3.2 23

2.1 New Features . 23

Chapter 3 Architectural Overview 25

3.1 Basic Architecture . 25
3.2 Constituents of the Adobe PDF Converter SDK . 25
3.3 Parallel Conversion . 26

Chapter 4 About the Deliverable Files 29

Chapter 5 Building and Using Democonverter 37

5.1 Supported platforms and compilers . 37
5.2 Building Democonverter . 37
5.3 Using Democonverter . 38
5.4 Democonverter PAP Font Support (Windows only) . 39

Chapter 6 Distiller Parameters . 41

6.1 Listing of Default Parameter Values . 41
6.2 Supported values of CheckCompliance key . 47
6.3 Setting Distiller Parameter Values . 48

Chapter 7 Interactions Between Adobe PDF Converter SDK and
Callbacks . 51

7.1 Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client . . . 51
7.2 Callbacks That Relay Information to the Client . 63

iv Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

7.3 Callbacks for Modifying DSC and PostScript . 64
7.4 Callback for Responding to the externalcomm and PostScript Operator 67
7.5 Callbacks for handling fatal error conditions . 68
7.6 Callbacks for handling pageskip feature . 68

Chapter 8 Using the NSClientFile API 69

8.1 About the NSClientFile API . 69
8.2 File Size Limitations . 69
8.3 Selecting File I/O Methods . 69
8.4 Data That Describes a Client File . 70

Chapter 9 Font-Related Behavior . 73

9.1 Review of Parameters That Affect Font-Related Behavior 73
9.2 Font Policy . 76
9.3 PostScript SubstituteFont Key Influences Font Policy . 79

Chapter 10 Frequently Asked Questions 81

10.1 Locations of ICC Profile Folders (Windows) . 81
10.2 Unexpected Failure . 82
10.3 Full-document PDF File . 82
10.4 Warning Message . 82
10.5 Offending command warning . 83
10.6 Error message #8 . 83
10.7 Error Message Processing PostScript that Contains a Screen Preview 83
10.8 Requirement for “iccprofiles” Folder . 84

Chapter 11 Restricting PostScript File System Access 87

11.1 Specifying Directories for Restricted Access. 87
11.2 Access Strings . 87
11.3 Processing the Security Settings. 89
11.4 Example Security Settings . 90

Using Adobe PDF Converter SDK v

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Part II: Adobe PDF Converter SDK Reference

Chapter 13 Functions and Callbacks 95

Chapter 14 NSClientFile API . 147

Chapter 15 Conversion of Image Files to PDF 153

Chapter 16 Conversion of PPML Files to PDF 155

Chapter 17 Dynamic N Page PDF Generation 157

17.1 Improvement in Dynamic N Page PDF Generation .157

Chapter 18 Structures and Enumerations 159

Appendix A Standard TrueType Fonts 197

Appendix B Apache Software License, Version 1.1 203

vi Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Using Adobe PDF Converter SDK vii

Preface

This Document
Using the Adobe PDF Converter SDK describes:
• How client software interacts with the PDF Converter SDK to convert Adobe

PostScript 3 files, Image files, and PPML files into PDF files
• The comparative differences between Adobe PDF Converter SDK and Acrobat

Distiller
• How you can use the sample client, democonverter, as a guide to create your own

clients for accessing the Adobe PDF Converter SDK
• The basic deliverables for Adobe PDF Converter SDK
• How Acrobat Distiller parameters influence Adobe PDF Converter SDK behavior
• How the Adobe PDF Converter SDK responds to font references (font policy)
This document also contains the reference chapters on the following topics:
• Functions and callbacks your client software uses to interact with the Adobe PDF

Converter SDK
• Functions and callbacks your client may use to provides its own file I/O library
• Description of structures and enumerations passed by the Adobe PDF Converter

SDK functions and callbacks.
This document is intended for OEM's developing software that incorporates the
Adobe PDF Converter SDK.
This document replaces Using Adobe Normalizer Server, Version 10.0

Notational Conventions
Typefaces are used as shown below:

Format Denotes

Regular Examples of the PostScript, PDF, or Portable Job Ticket Format
(PJTF) language.
DSC and other PostScript comments.

Bold All PostScript, PDF, or PJTF language names, such as the names
of operators, keys, dictionaries, and resource categories.

Monospaced All C programming language expressions, file names, and
pathnames.

Preface
Documentation Problems

viii Using Adobe PDF Converter SDK

Documentation Problems
If you discover any errors in or have any problems with this document, please e-mail
us at:

doc_problems@adobe.com
Please describe the error or problem as completely as possible and give us the
document ID number (located at the foot of the cover page), the document title, and
the page number or page range.

Using Adobe PDF Converter SDK 9

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Part I

Adobe PDF Converter SDK Concepts
Part I presents an overview of the Adobe PDF Converter SDK, lists and describes
the product deliverables, explains concepts such as how to use the Adobe PDF
Converter SDK interfaces, and answers frequently asked questions. The chapters
in Part I are:
• Chapter 1, “About Adobe PDF Converter SDK”
• Chapter 2, “New in this release: APC 3.2”
• Chapter 3, “Architectural Overview”
• Chapter 4, “About the Deliverable Files”
• Chapter 5, “Building and Using Democonverter”
• Chapter 6, “Distiller Parameters”
• Chapter 7, “Interactions Between Adobe PDF Converter SDK and Callbacks”
• Chapter 8, “Using the NSClientFile API”
• Chapter 10, “Frequently Asked Questions”

Using Adobe PDF Converter SDK 10
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

1 About Adobe PDF Converter SDK

1.1 Overview
This chapter provides basic information about the Adobe PDF Converter SDK and
compares it to Acrobat Distiller 10.0, an Adobe product that also converts PostScript
content into PDF format.

NOTE: This document uses the name Distiller in place of the full product name
Acrobat Distiller.

1.1.1 What It Does
The Adobe PDF Converter SDK, like Distiller, converts PostScript language streams
into PDF streams, a process called conversion. Unlike Distiller, the Adobe PDF
Converter SDK also converts image files and PPML files into PDF files and is highly
customizable, allowing you to control many aspects of conversion that cannot be
controlled through the Distiller interface. Conversion and the term distillation have the
same meanings with regards to the functioning of the Adobe PDF Converter SDK. 1

The Adobe PDF Converter SDK is a library of functions that works under the direction
of a client. The Adobe PDF Converter SDK contains a generic sample of client
software, called Democonverter. This provides a basic tool that OEMs can use to
develop specific client software that includes individual printing system features.

1.1.2 What It Consumes
Summary
• EPS, provided any screen (bitmap) previews are stripped out

NOTE: A difference in terminology exists between this guide and the document
entitled Acrobat Distiller Parameters (Technical Note 5151). Technical Note
5151 uses the terms “PDF settings file” and “Adobe PDF settings” where this
guide uses “job options”.

General Description
Figure 1.1 illustrates the data flow supported by the Adobe PDF Converter SDK. The
client software provides the Adobe PDF Converter SDK with job options, which

1. The term conversion was originally intended to mean segmenting a PostScript stream into page packages of some
undetermined format, in order to allow pages to be independently printed. Ultimately, PDF was selected as the preferred
format, causing conversion and distillation to refer to the same process.

About Adobe PDF Converter SDK
Overview

1

11 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

provides instructions on how PostScript streams/files, image files and PPML files
should be converted.

Job options are PostScript segments that contain PostScript setdistillerparams and
setpagedevice operators that correspond to the Distiller parameters described in
Technical Note 5151, Acrobat Distiller Parameters. Acrobat Distiller also consumes
job options that the user specifies using the Job Option field in the user interface.
Distiller parameters specify how a PostScript file/stream should be distilled or
converted.

FIGURE 1.1 Data flow for Adobe PDF Converter SDK (job option controlled)

If the client provides the Adobe PDF Converter SDK with job options, this dictates
how the Adobe PDF Converter SDK obtains the streams/files for processing, as
follows:
• Job options mode — If the Adobe PDF Converter SDK is run in job options mode,

the Adobe PDF Converter SDK consumes client-provided PostScript streams,
which it obtains using callbacks. The Adobe PDF Converter SDK treats such
streams as a job, whose beginning and end is indicated by the client. That is, a
single job can include multiple discrete PostScript streams.

1.1.3 What It Produces
Summary
The Adobe PDF Converter SDK produces files of the following format:
• PDF v1.2 - v1.7

Adobe PDF Converter SDK
Full-document
PDF files .

NOTE: Rather than have Adobe PDF Converter SDK use the
system’s file runtime library in creating the full-document PDF
files, the client can provide an alternate library, by supplying the
Adobe PDF Converter SDK with a file I/O library.

Job options, host
fonts, ICC
profiles, image
files, and/or
PPML files,
and/or PS files

Client

Additional PostScript
segments, such as
epilogues/prologues, or
replacement sequences.

PDF stream for individual pages.
Data for external files, including DSC
comments, externalprocess PostScript
commands, EPS, PPML and image
streams

External data files

PDF files containing single/
multiple pages.

Using Adobe PDF Converter SDK 12

About Adobe PDF Converter SDK
Overview

1

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

General Description
As the Adobe PDF Converter SDK processes a job, it produces a full-document PDF
file, and it can produce several data streams. More specifically, the Adobe PDF
Converter SDK produces the following:
• A PDF file for the entire job — The Adobe PDF Converter SDK always produces a

PDF file that represents the entire contents of the job. Such a file, which is called a
full-document PDF file, can be no larger than 10 Gigabytes.

• PDF streams for individual pages — The Adobe PDF Converter SDK can produce
PDF streams for individual pages (called PDF page streams), which the client
stores in files, one per page. (This document uses the term PDF page files to mean
PDF page streams the client has stored in files.)

• PDF streams for a set of pages — The Adobe PDF Converter SDK can produce
PDF streams for a set of pages.

• PDF streams for image files— The Adobe PDF Converter SDK can produce PDF
streams for images.

• Data streams for external files — The Adobe PDF Converter SDK can produce
data streams that the client stores in external files. Those streams can represent
any of the following inputs:
– Conforming EPS programs. The resulting data streams are exact copies of the

original EPS programs.
– Image streams either embedded in the PostScript stream or residing in separate

files. Reflecting certain Distiller parameters, such data streams may be either
exact copies of the original image streams or modified versions of those streams.

• Information about the PostScript stream — The Adobe PDF Converter SDK
provides the client with information about the PostScript stream, including page
device keys and page information contained in PostScript and DSC comments.
The Adobe PDF Converter SDK can also provide the client with DSC comments
and with externalcommand PostScript operators.

1.1.4 Usage Scenarios
Products based upon the Adobe PDF Converter SDK will likely be used in one of the
following general scenarios:
• Distiller scenario — In the Distiller scenario, the client provides the Adobe PDF

Converter SDK with job options that specify how the PostScript streams are to be
processed. The Adobe PDF Converter SDK then processes the job options, as
described in the previous section under “Job controlled by job options.”

1.1.5 How To Control Adobe PDF Converter SDK
You can control the Adobe PDF Converter SDK using several methods:

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

13 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

• Specifying variables passed to the Adobe PDF Converter SDK public functions.
Such variables include Job options that specify how PostScript streams/files are to
be normalized.

• Specifying values returned by client-provided callbacks, as described in 7.1,
“Callbacks for Transferring Data between the Adobe PDF Converter SDK and a
Client”, and 7.2, “Callbacks That Relay Information to the Client”.

• Providing a PostScript program and other data that the Adobe PDF Converter SDK
uses to initialize the PostScript Interpreter, as described in the files delivered with
the Adobe PDF Converter SDK.

• Adding to the PostScript streams passed to the Adobe PDF Converter SDK,
PostScript segments that initialize Distiller parameters. Adobe Technical Note
#5151, Acrobat Distiller Parameters, describes the Distiller parameters and, in
general, how you set those parameters using a PostScript program. 6.3, “Setting
Distiller Parameter Values”, provides specific examples of how to use PostScript
segments to set Distiller parameters.

1.2 Comparing Adobe PDF Converter SDK and Distiller
This section compares the features of the Adobe PDF Converter SDK against those
of Distiller.
The Adobe PDF Converter SDK and the Distiller are similar in their ability to convert
PostScript streams into PDF files. However, the Adobe PDF Converter SDK allows
OEMs to customize various aspects of that conversion process. In general, the
Distiller does not support such customization.

1.2.1 Similarities
The Adobe PDF Converter SDK is similar to Distiller Version 10.0 in the following
ways:
• Both produce PDF files and streams that are compliant with Portable Document

Format, Version 1.7 and earlier.
• The Adobe PDF Converter SDK supports all Distiller parameters, except those

parameters that require post processing. Examples of such post-processing
parameters include Optimize and DoThumbnails. Distiller uses the PDF Library for
post-processing.

• They take roughly the same time and resources to convert a file.

1.2.2 Differences
Although the Adobe PDF Converter SDK and the Distiller have the same primary
function of converting PostScript streams/files into PDF format, they also have

Using Adobe PDF Converter SDK 14

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

differences that might make one a better solution for your application than the other.
These differences are described in Table 1.1 (what they consume), Table 1.2 (what
they produce), Table 1.3 (how they are controlled), Table 1.4 (what parameters they
support), Table 1.5 (how they manage fonts), and Table 1.7 (other differences).

TABLE 1.1 Differences in what Adobe PDF Converter SDK and Distiller consume

Capability Adobe PDF Converter SDK 3.2 Distiller 10

Support of
PostScript File
System Emulation

Supported Cannot be configured to support
PostScript File System Emulation.

Format of
PostScript data

Accepts PostScript streams from
its client.

Accepts PostScript files.

TABLE 1.2 Differences in what Adobe PDF Converter SDK and the Distiller produce

Capability Adobe PDF Converter SDK 3.2 Distiller 10

Comment
substitution

Can perform comment substitution.
As the Adobe PDF Converter SDK
encounters comments, it reports
them to the client. The client may
then direct the Adobe PDF
Converter SDK to replace some or
all of those comments with any
PostScript expressions.

Does not provide such a capability.

Reporting page
information

Notifies the client about page
information found in PostScript and
DSC comments, specifically the
page label, plate color, and page
device keys.

Does not provide such a capability.

Producing PDF for
individual pages

The Adobe PDF Converter SDK
can produce PDF streams for
individual pages, in addition to full-
document PDF files.

Not supported. Distiller only
produces full-document PDF files.

Producing PDF for
a set of pages

The Adobe PDF Converter SDK
can produce PDF streams for a set
of pages.

Not supported. Distiller only
produces full-document PDF files.

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

15 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Producing PDF for
image files

The Adobe PDF Converter SDK
can produce PDF streams for
image files.

Not supported.

Producing PDF for
PPML files

The Adobe PDF Converter SDK
can produce PDF streams for
PPML files.

Not supported.

Reporting page
device keys

Reports page device keys.
Can also represent such keys in
PJTF objects added to the PDF
file.

Does not report page device keys.
However, Distiller represents such
keys in PJTF objects.

Image stream
sidelining

Can write image data to external
files.

Does not provide such a capability.

EPS sidelining Can set aside conforming
embedded EPS programs, rather
than converting them.
NOTE: This feature may be
discontinued in future versions of
the Adobe PDF Converter SDK.

Does not provide such a capability.

Support of
PostScript File
System emulation

Allows you to implement software
that uses PostScript File System
emulation.

Does not provide such a capability.

Support for creation
of reference Xobject

Allows you to create reference
Xobjects instead of embedded
Xobject.

Does not provide such a capability.

TABLE 1.3 Differences in how the Adobe PDF Converter SDK and the Distiller are controlled

Capability Adobe PDF Converter SDK 3.2 Distiller 10

User interface Does not provide a user interface;
however, you could develop one as
part of your client software.

Has a GUI that can be modified.

Support of hot folders
(watched folders) and
job submissions

Does not provide such support;
however, you could customize your
client software to provide such
capabilities.

Supports hot folders and job
submission.

TABLE 1.2 Differences in what Adobe PDF Converter SDK and the Distiller produce (Continued)

Capability Adobe PDF Converter SDK 3.2 Distiller 10

Using Adobe PDF Converter SDK 16

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Support of ICC profile
selection from ACE
default ICC profile
directories.

On Windows, the Adobe PDF
Converter SDK allows selection of
ICC profiles from any/all of the
default ICC profile directories.
These directories include the
Adobe Color Profiles
Recommended folder, the Adobe
Color Profiles folder and the
system Color Profiles folder.

Searches all default ICC profile
directories.

Support for ICC
profiles located in non-
default folders.

Supported. On Windows, such
non-default folders are in addition
to default ICC profile directories.
On Mac, the Adobe PDF Converter
SDK supports either ICC profiles
located in non-default folders or
those located in ACE default ICC
profile directories.

Not supported

TABLE 1.4 Differences in supported Distiller parameters

Capability Adobe PDF Converter SDK 3.2 Distiller 10

DoThumbnails Not supported. (Distiller performs
optimization as a post-processing
task. The Adobe PDF Converter
SDK does not support such tasks.)

Supported. This feature allows
thumbnails to be embedded in
the PDF, speeding up the time
to display thumbnails at the
expense of file size.

CompressObjects Not supported. (Distiller performs
optimization as a post-processing
task. The Adobe PDF Converter
SDK does not support such tasks.)

Supported

Optimize Not supported. (Distiller performs
optimization as a post-processing
task. The Adobe PDF Converter
SDK does not support such tasks.)

Supported. This feature
optimizes a PDF file for Web
viewing. It does so restructuring
the file for page-at-a-time
downloading and by
compressing text and line art
regardless of the Compression
settings.

TABLE 1.3 Differences in how the Adobe PDF Converter SDK and the Distiller are controlled

Capability Adobe PDF Converter SDK 3.2 Distiller 10

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

17 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

UsePrologue Supported. Supported

EmbedJobOptions Not supported. (Setting the
EmbedJobOptions Distiller
parameter to TRUE in a Job
Options file has no effect in Adobe
PDF Converter SDK, running on
Windows. When this parameter is
set to TRUE, then Distiller 7.0 and
later, embeds the Job Options file
in the PDF as an attachment.)

Supported

TABLE 1.5 Differences in how the Adobe PDF Converter SDK and the Distiller support and
manage fonts

Capability Adobe PDF Converter SDK 3.2 Distiller 10

Control over host font
cache.

Allows multiple products based on
the Adobe PDF Converter SDK to
use the same host font cache.
Such control supports
implementation of parallel
conversion/distillation. (Windows
only)

Not supported

Font policies Uses the same font policies as
Distiller, with the following
exceptions:
• The Adobe PDF Converter SDK

may be directed to always
embed (in the PDF file
produced) fonts contained in the
PostScript stream.

Can embed fonts included in the
PostScript stream, only if the
user has specified the names of
those fonts in the list of fonts to
be embedded.

Downloading CJK
fonts

You can modify your client software
to use the Adobe PDF Converter
SDK to download CJK fonts. Such
a capability would set up a
connection between the back
channel and a font downloader.

Cannot download CJK fonts
because it does not support
PostScript File System
emulation.

TABLE 1.4 Differences in supported Distiller parameters

Capability Adobe PDF Converter SDK 3.2 Distiller 10

Using Adobe PDF Converter SDK 18

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Creating substitute
fonts

Allows the client to specify that
missing fonts should be substituted
using the ATM database or to
disable such synthesis.

Always attempts to synthesize
missing fonts.

Specifying a
replacement font

For non-CID fonts, the job options
may contain a sequence that states
whether a default font can be used
and, if so, which font. (the Adobe
PDF Converter SDK uses a
replacement font when the font
specified in the PostScript stream
can neither be found nor
synthesized.)

For non-CID fonts, Distiller
always uses Courier as the
replacement font.
You could create job options
containing default font
instructions; however, the
Distiller UI does not support the
creation of such a file.

Embedding a font that
is embedded in the
PostScript data

In the PDF file, the Adobe PDF
Converter SDK may be directed to
embed fonts that are contained in
the PostScript stream, regardless
of Distiller parameters that might
specify otherwise.

Only embeds fonts as directed
by Distiller parameters and by
the user (via the UI).

PAP font support On Windows platforms that provide
“Services for Macintosh” (SFM),
the Adobe PDF Converter SDK
can start in “PAP mode”, listening
for AppleTalk connections, and
honoring font security
mechanisms.
NOTE: If your system has an
AppleTalk stack, the PAP interface
code can be modified to allow PAP
downloading to occur on platforms
other than Windows.

• On a Mac, the Distiller printer
can use the Quartz printing
architecture to provide font
services, including
downloading fonts.

• On a PC, there is no PAP
support (even Macintosh
accessible NT Printers on NT
server will not work as they
are not bi-directional).

Indication of duplicate
fonts.

Supported Not supported

Control over
directories searched
for host fonts.

Does not attempt to find non-
system ATM font folders. Instead
you must specify such folders
through the the Adobe PDF
Converter SDK API.

Allows the user to choose which
folders to look for fonts. Also
finds ATM font folders
automatically.

TABLE 1.5 Differences in how the Adobe PDF Converter SDK and the Distiller support and
manage fonts (Continued)

Capability Adobe PDF Converter SDK 3.2 Distiller 10

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

19 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Ability to use or
ignore TrueType fonts

Can be directed to ignore the
TrueType versions of standard
PostScript fonts that appear in the
resource search list. Appendix A
lists the standard fonts. Otherwise,
the Adobe PDF Converter SDK
recognizes all TrueType fonts.

Can be directed to ignore ALL
TrueType fonts that appear in the
font locations. Otherwise,
Distiller recognizes all TrueType
fonts.

TABLE 1.6 Differences in security

Issue Adobe PDF Converter SDK 3.2 Distiller 10

Restricting the
directories searched
by the PostScript
Interpreter.

Directories search may be
constrained to a particular set.

No such limitation supported.

Security in PDF files. Not supported. Distiller allows the user to
specify passwords required to
accomplish various tasks, such
as printing or modifying a
document. It also allows the PDF
file to be encrypted.

TABLE 1.7 Other differences

Issue Adobe PDF Converter SDK 3.2 Distiller 10

Honor for the
/Producer key

Honors the /Producer key Does not honor the /Producer
key set by pdfmark.
Example:
The [/Producer (My
Producer_1) /DOCINFO
pdfmark is ignored. Alternatively,
Distiller hardcodes the
/Producer key to “Acrobat
Distiller 8.0”

TABLE 1.5 Differences in how the Adobe PDF Converter SDK and the Distiller support and
manage fonts (Continued)

Capability Adobe PDF Converter SDK 3.2 Distiller 10

Using Adobe PDF Converter SDK 20

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Ability to change the
DSC/PostScript
content being
Distilled.

Windows version allows you to
replace a DSC comment with other
DSC/PostScript. Also allows you to
add PostScript after a DSC and/or
to skip existing PostScript between
a DSC comment and the next DSC
comment.

Not supported

Provision for
invoking client-
supplied code in
response to the
externalcommand
PostScript operator.

Supported Not supported

Control over
allocation and
deallocation of VM.

Supported Not supported

Supported
platforms

• Windows 32 bit (Windows 7,
Windows 8.1, Windows 10)

• Windows 64 bit (Windows 7,
Windows 8.1, Windows 10,
Windows 2008 Server R2,
Windows 2012 Server)

• Linux x86 64 bit (RHEL 7)
*(APC SDK 3.2 is not released for Mac
platform)

• Microsoft® Windows® XP, (32
bit and 64 bit); Windows
Server® 2003 (32 bit and 64
bit; Windows Server 2008 or
2008 R2 (32 bit and 64 bit);
Windows Vista® (32 bit and
64 bit); Windows 7 (32 bit and
64 bit)

Support of
customized file I/O

Provides an API that allows a client
to provide customized file I/O for
full-document PDF files.

Does not provide such a
capability.

PDF/X compliance
test support

Adobe PDF Converter SDK does
not support the PDFX1aCheck and
PDFX3Check Distiller parameters.
As there are more ways of PDF X
and A checking available in PDF
Converter SDK, a name value in an
array called CheckCompliance,
is used instead of the
PDFX1aCheck and PDFX3Check
Booleans.

Distiller 7.0 and later versions
continue to support the
PDFX1aCheck and PDFX3Check
Distiller parameters.

TABLE 1.7 Other differences

Issue Adobe PDF Converter SDK 3.2 Distiller 10

About Adobe PDF Converter SDK
Comparing Adobe PDF Converter SDK and Distiller

1

21 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Support for
generation of
PDF/X-4 compatible
PDF.

Allow user to generate PDF/X-4
compliant PDF.

Does not provide such a
capability.

TABLE 1.7 Other differences

Issue Adobe PDF Converter SDK 3.2 Distiller 10

Using Adobe PDF Converter SDK 22

About Adobe PDF Converter SDK
Support of UNICODE Character Strings

1

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

1.3 Support of UNICODE Character Strings
This section highlights the character strings for which the client can provide
UNICODE character strings.

1.3.1 In Pathnames
For Files Consumed by the Adobe PDF Converter SDK
Pathnames for the following types of files may only use standard character encoding:
• Resource search lists
• External files that appear in the PostScript program with the run operator

For Files Produced by the Client
Pathnames for the following types of files may use either standard or UNICODE
character encoding:
• Files containing PDF page streams
• Files containing streams for PDF with multiple pages
• Sidelined EPS programs
• Sidelined images
• Files containing streams for PDF with multiple pages
• Full-document PDF files. When the full-document PDF file is created by the client,

and the output pathname is omitted, or when the client provides a customized file
I/O library for the full-document PDF file.

For Files Produced by the Adobe PDF Converter SDK
Pathnames for the following types of files may only use standard character encoding;
they must not use UNICODE.
• Scratch file directories. (The client provides the directory names, but the Adobe

PDF Converter SDK determines the individual file names.)
• Full-document PDF files, when pathname is provided by the client software.

Using Adobe PDF Converter SDK 23
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

2 New in this release: APC 3.2

This chapter describes the new features in Adobe PDF Converter SDK 3.2.

2.1 New Features
• New Era Japanese Ligature support is added in Adobe PDF Converter SDK 3.2.
• APC CSL 3.2 has updated CMaps to support the New Era Japanese ligature in

APC SDK.
• Algorithm for Image Data conversion in ConvertToIndexedImage() API is optimized

to improve the performance in APC SDK.
• Composite font deletion mechanism is improved by adding modification to

MakeFontFlush() API.

Using Adobe PDF Converter SDK 25
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

3 Architectural Overview

This chapter describes the relationship between the Adobe PDF Converter SDK and
its client software.

3.1 Basic Architecture
Figure 3.1 illustrates the relationship between the Adobe PDF Converter SDK and it’s
client software. The components in the illustration are described below:
• Democonverter — An Adobe PDF Converter SDK front-end. Consists of example

code that the OEM uses as a model for developing a specific client.
Democonverter is delivered as source and executables.

• Adobe PDF Converter SDK — The engine for converting PostScript files/streams
image and PPML files into PDF files/streams. The Adobe PDF Converter SDK is
delivered in binary form.

FIGURE 3.1 Democonverter architecture

3.2 Constituents of the Adobe PDF Converter SDK
The Adobe PDF Converter SDK includes the Distiller core software and the
interpreter software from the PostScript Interpreter. (Despite its name, the PostScript
Interpreter contains both interpreter and rasterizer software.) For both the PostScript
Interpreter and the Adobe PDF Converter SDK, Figure 3.2 shows the relationship
between the interpreter software and the other major components.

Interface header files

Democonverter

Adobe PDF Converter SDK

(the client)

Architectural Overview
Parallel Conversion

3

26 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 3.2 The PostScript Interpreter and the Adobe PDF Converter SDK contain
interpreter software

3.3 Parallel Conversion
Parallel conversion uses multiple instances of the Adobe PDF Converter SDK
together to process jobs more efficiently. For example, you can take advantage of the
Adobe PDF Converter SDK feature of enabling and disabling individual pages in order
to create a scenario where two versions of the Adobe PDF Converter SDK alternate
page processing. In this way you can have each instance of the Adobe PDF
Converter SDK process only a specific set of pages, such as all the odd numbered
pages, from a job.
Remember these key architectural concepts when setting up and using parallel
conversion:
• The Adobe PDF Converter SDK supports only a single client; in other words, it is

not re-entrant. However, you can run multiple Adobe PDF Converter SDK
processes from one Adobe PDF Converter SDK directory, subject to any license
agreement.

• The Adobe PDF Converter SDK is not thread-safe; that is, you cannot use a single
instance of democonverter launching multiple threads, each with a separate
instance of the Adobe PDF Converter SDK.

• Each Adobe PDF Converter SDK process must use a unique (that is differently
named) scratch file directory.

• If multiple Adobe PDF Converter SDK instances are sharing a host font cache,
then initialize all instances with the same host font information. Do not change the

Rasterizer

PostScript Interpreter

Distiller Core

Adobe PDF Converter SDK

Front-end

This diagram shows the interwoven relationship between the Adobe PostScript
Interpreter and the PostScript Rasterizer code. That relationship is partially
duplicated between the Interpreter and the Distiller core.

Interpreter
Interpreter

Image
Converter

Using Adobe PDF Converter SDK 27

Architectural Overview
Parallel Conversion

3

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

host font information after initialization. Alternatively, if you must change the host
font information after initialization, then use separate host font files for each the
Adobe PDF Converter SDK instance.

FIGURE 3.3 Using multiple copies of Adobe PDF Converter SDK without mutex
callbacks

FIGURE 3.4 Using multiple copies of Adobe PDF Converter SDK with mutex callbacks

PDF Converter SDK

Host Font Cache File Host Font Cache FileHost Font Cache File

PDF Converter SDK Client

PDF Converter SDK

PDF Converter SDK Client

PDF Converter SDK

PDF Converter SDK Client

Mutex

Host Font Cache File

PDF Converter SDK

PDF Converter SDK Client

PDF Converter SDK

PDF Converter SDK Client

PDF Converter SDK

PDF Converter SDK Client

Architectural Overview
Parallel Conversion

3

28 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

When setting up instances of the Adobe PDF Converter SDK for parallel conversion,
access to host font information can be handled in two ways:
• Figure 3.3 illustrates a situation where the host fonts are not shared in a common

cache file. In this case, each instance of the Adobe PDF Converter SDK uses a
unique host font cache file.

• Alternatively, you can take advantage of the Windows-only
NSGetHostFontMutexProc() and NSReleaseHostFontMutexProc()
callbacks, illustrated in Figure 3.4. These callbacks allow you to have a single host
font cache rather than having one host font cache file for each Adobe PDF
Converter SDK instance. Through use of the callbacks, you can control access to
the single font cache so that the first Adobe PDF Converter SDK instance to
access the cache effectively locks access to the cache for other Adobe PDF
Converter SDK instances. Once the cache has been released, it is accessible by
the next Adobe PDF Converter SDK instance.

Using Adobe PDF Converter SDK 29
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

4 About the Deliverable Files

This chapter describes the organization and contents of the Adobe PDF Converter
SDK deliverables. The directory structure has changed from previous deliveries.
These deliverables include the files required to build and execute democonverter,
including the object and header files for the Adobe PDF Converter SDK.
Libraries and executables do not contain debugging information.

TABLE 4.1 Adobe PDF Converter SDK first level files and directories

Directory or file Description

Windows:ACE.dll
Linux: libACE.so

Contains the Adobe Color Engine (ACE).

Windows: AGM.dll
Linux: libAGM.so

Contains the Adobe Graphics Manager (AGM).

Windows:BIB.dll
Linux: libBIB.so

The Bravo Interface Binder (BIB) linked object used by the
ACE and AGM.

Windows:BIBUtils.dll
Linux: libBIBUtils.so

The Bravo Interface Binder Utilities linked object used by the
ACE and AGM.

democonverter or
democonverter.build

Directory containing the Democonverter include files
(Table 4.3), platform-specific library files (Table 4.4),
Democonverter source files (Table 4.5), and platform-specific
project or make files.

empty.ps Dummy file required for the AppleTalk demo to run.

fonts Directory of fonts democonverter uses as its font resource.
NOTE: The Adobe PDF Converter SDK ships with the Courier
font included. You must purchase additional fonts separately.

ICCProfiles Directory containing the profiles that allow the Adobe PDF
Converter SDK to use the Adobe Color Engine (ACE). See
Table 4.2 for a description of the files in this directory.

Windows:JP2KLib.dll
Linux: libJP2K.so

The linked object that Adobe PDF Converter SDK uses to
support JPEG2000.

About the Deliverable Files4

30 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Windows:apc.dll,
ACE.dll, AdobeXMP.dll,
AGM.dll,
AXE8SharedExpat.dll,
BIB.dll, BIBUtils.dll,
CoolType.dll
Linux: libPDFL.so,
libACE.so,
libAdobeXMP.so,
libAGM.so,
libAXE8SharedExpat.so,
libBIB.so,
libBIBUtils.so,
libCoolType.so
MacOS: apclib,
AdobeACE, AdobeXMP,
AdobeAGM,
AdobeAX8SharedExpat,
AdobeBIB,
AdobeBIBUtils,
AdobeCoolType

Dynamically linked object code of Adobe PDF Converter SDK
and its constituents, including the Distiller core.

Windows:AdobePDFL.dll,
ImagetoPDF.dll,
JP2KLib.dll
Linux: libpdfl.so,
libImagetoPDF.so,
libJP2K.so
MacOS: AdobePDFL,
imagetopdf, AdobeJP2K

The linked object that Adobe PDF Converter SDK uses for
converting image files to PDF files.

Linux:
libc++abi.so.1,
libc++.so.1,
libgcc_s.so.1,
libstdc++.so.6

GCC specific shared libraries.

APC.pdf This document.

TABLE 4.1 Adobe PDF Converter SDK first level files and directories

Directory or file Description

Using Adobe PDF Converter SDK 31

About the Deliverable Files 4

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Windowsps.vm
Linux:PS.VM

A file that Adobe PDF Converter SDK uses to initialize the
PostScript Interpreter’s virtual memory.

ReadMe.html Late breaking information about this product.

Resource Directory containing resources used by democonverter. See
Table 4.4 for a description of the files in this directory.

Resource\ColorRendering A directory containing several color rendering dictionaries
(CRDs).

Resource\ProcSet A directory containing ProcSet dictionaries used to achieve
various production objectives. These dictionaries are used for
historical reasons; they are not unique to the Adobe PDF
Converter SDK. You shouldn’t need to modify the ProcSets.

Resource/CMap Directory containing CMaps, these CMaps are used by CID
fonts

Resource/Color Directory containing ICC Profile

Resource/Font Directory containing Fonts

Resource/Unicode These files are required by font to perform character-code
glyph-id conversion appropriately

Settings This folder contains job options files.

startupNorm.ps Sample startup PostScript program that democonverter uses
to initialize the PostScript Interpreter.
democonverter will run without startupNORM.ps; however,
the PostScript Interpreter’s default setup is left unchanged.

superatm.db Adobe Type Manager (ATM) database, which may be used by
the Adobe PDF Converter SDK to substitute missing fonts.
NOTE: Democonverter will run without superatm.db;
however, the Adobe PDF Converter SDK will be unable to
perform font emulation (font fauxing).

TABLE 4.1 Adobe PDF Converter SDK first level files and directories

Directory or file Description

About the Deliverable Files4

32 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

TABLE 4.2 Files in ICCProfiles

File name
(Names do not vary across platforms) Description

AdobeRGB1998.icc A binary data file for the AdobeRGB1998 ICC profile.

AppleRGB.icc A binary data file for the AppleRGB ICC profile.

BlackWhite.icc A binary data file for the BlackWhite ICC profile.

CoatedFOGRA39.icc A binary data file for CoatedFOGRA39 ICC profile.

CoatedGRACoL2006.icc A binary data file for CoatedGRACoL2006 ICC profile.

CIERGB.icc A binary data file for the CIERGB ICC profile.

ColorMatchRGB.icc A binary data file for the ColorMatchRGB ICC profile.

EuropeISOCoatedFOGRA27.icc A binary data file for EuropeISOCoatedFOGRA27 ICC
profile.

EuroscaleCoated.icc A binary data file for the EuroscaleCoated ICC profile.

EuroscaleUncoated.icc A binary data file for the EuroscaleUncoated ICC profile.

JapanColor2001Coated.icc A binary data file for the JapanColor2001Coated ICC
profile.

JapanColor2001Uncoated.icc A binary data file for the JapanColor2001Uncoated ICC
profile.

JapanColor2002Newspaper.icc A binary data file for JapanColor2002Newspaper ICC
profile.

JapanStandard.icc A binary data file for the JapanStandard ICC profile.

JapanWebCoated.icc A binary data file for the JapanWebCoated ICC profile.

PAL_SECAM.icc A binary data file for the PAL_SECAM ICC profile.

ProPhoto.icm A binary data file for the ProPhoto.icm ICC profile

SMPTE-C.icc A binary data file for the SMPTE-C ICC profile.

UncoatedFOGRA29.icc A binary data file for the UncoatedFOGRA29 ICC profile.

USSheetfedCoated.icc A binary data file for the USSheetfedCoated ICC profile.

USSheetfedUncoated.icc A binary data file for the USSheetfedUncoated ICC profile.

Using Adobe PDF Converter SDK 33

About the Deliverable Files 4

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

USWebCoatedSWOP.icc A binary data file for the USWebCoatedSWOP ICC
profile.

USWebUncoated.icc A binary data file for the USWebUncoated ICC profile.

WebCoatedFOGRA28.icc A binary data file for the WebCoatedFOGRA28 ICC
profile.

WebCoatedSWOP2006Grade3.icc A binary data file for the WebCoatedSWOP2006Grade3
ICC profile.

WebCoatedSWOP2006Grade5.icc A binary data file for the WebCoatedSWOP2006Grade5
ICC profile.

WideGamutRGB.icc A binary data file for the WideGamutRGB ICC profile.

sRGB Color Space Profile.ic
m

A binary data file for the sRGB Color Space Profile ICC
profile.

TABLE 4.3 Files in the directory democonverter/includes or democonverter.build/includes

File name Description

ASBasic.h Defines Adobe Standard Definitions of “Basic” parameter
types.

ASEnv.h Defines the Adobe Standard Environment, including the
compilation parameter settings. Includes definitions of the
allowed values for the required AS_ISP and AS_OS
compiler switches. It also provides definitions of configuration
parameters based on those two switches.

devcoord.h Defines various data structures used in democonverter.

environment.h Defines symbolic names used to declare various configuration
details, including the type of the instruction set processor (type
of machine), the operating system, and other information
about the environment in which the resulting binary will
operate.

apcif.h Defines the interface between the client and the Adobe PDF
Converter SDK.

TABLE 4.2 Files in ICCProfiles

File name
(Names do not vary across platforms) Description

About the Deliverable Files4

34 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

opsys.h Initializes the opsys package for products that do not use
os_StartTheWorld or os_rtosStart from the task.h
interface.

os_errno.h Recasts Adobe error codes into Posix error codes.

os_pthread.h Directly defines os_pthread_mutex_t,
os_pthread_cond_t, and the various mutex and cond
functions in Posix environments, in terms of the underlying
Posix structures and functions.

os_time.h Defines the real time, high-resolution clock for the operating
system.

posix_environment.h Contains macro definitions enabling certain declarations in
system-dependent header files (if building for a system with
some level of Posix compliance). These macro definitions are
harmless on a system that has no Posix support.
NOTE: This file must be included at the start of any .c file that
requires it. Only package_spec.h may be included before
it. This is because _POSIX_C_SOURCE must be defined
before any system header files are included. Since other .h
files may include a system header, the only safe practice is to
include this file first.

protos.h Contains a set of macros that optionally generate ANSI
function prototypes that depend on the PROTOTYPES switch
found in the file environment.h. The macros serve as good
documentation, and can help ANSI compilers catch type-
mismatch errors.

publictypes.h Defines the public types that allow Distiller to build.

spdkeys.h Defines enumerations for the page device keys that the Adobe
PDF Converter SDK can recognize.

TABLE 4.4 Files in the democonverter/*/libs or democonverter.build/*/libsdirectory

Directory or file name Description

Windows:ix86win32 A directory containing the files normpap.lib and apc.lib
needed by the development environment.

TABLE 4.3 Files in the directory democonverter/includes or

File name Description

Using Adobe PDF Converter SDK 35

About the Deliverable Files 4

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

TABLE 4.5 Files in democonverter/sources or democonverter.build/sources

Directory or file name Description

Windows:demofepapwin32.c The source code for Democonverter, which allows font
downloading over a PAP channel to the Windows Adobe PDF
Converter SDK. This means Japanese fonts can be installed
on a Adobe PDF Converter SDK only system.

All platforms:demomain.c The source code for democonverter front-end.

Windows:demopap.c The source code for the Democonverter example that allows
PAP font downloading.
NOTE: You can implement PAP support on any platform that
has an Appletalk stack.

Windows:demopap.h The header code for the Democonverter example that allows
PAP font downloading.

Windows:
norm_win_package_specs.h
Linux:

norm_unix_package_specs.
h

Macro definitions that support the header files.

Using Adobe PDF Converter SDK 37
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

5 Building and Using
Democonverter

This chapter lists the supported platforms and compilers for Adobe PDF Converter
3.2. It also explains how to build and use democonverter, the sample client for the
Adobe PDF Converter SDK.

5.1 Supported platforms and compilers
Table 5.1 lists the supported platforms and compilers for Adobe PDF Converter 3.2.

*Adobe PDF Converter SDK 3.2 is not released for Mac Platform

5.2 Building Democonverter
This section explains how to build Democonverter on all supported platforms:
Windows (32 and 64 bit), Linux (64 bit).

NOTE: Democonverter and Adobe PDF Converter SDK are not set up to support
double-byte (CJK) fonts. If you wish to support CJK fonts, please see your
Adobe Developer Support Engineer.

5.2.1 Windows
The following steps explain how to build democonverter in a Windows environment:

1. Start Microsoft Visual Studio 2017.

TABLE 5.1 Supported platforms and compilers

Platform OS Compiler

Windows 32 bit Windows 7, Windows 8.1,
Windows 10

Visual Studio 2017(Version
15.3.3)

Windows 64 bit Windows 7, Windows 8.1,
Windows 10, Windows 2008
Server R2, Windows 2012
Server

Visual Studio 2017(Version
15.3.3)

Linux x86 64 bit RHEL 7 Clang 3.9, glib 2.17

Building and Using Democonverter
Using Democonverter

5

38 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

2. Do one of the following:
• For windows 32 bit: Open the democonverter.vcxproj project file located in

democonverter\ix86win32\ included with the democonverter source code..
• For windows 64 bit: Open the democonverter.vcxproj project file located in

democonverter\ix86win64\ included with the democonverter source code.

3. Select the release or debug build that you require.

4. Build the project.

5. Copy the resulting democonverter.exe to the root of the distribution and
execute it.

5.2.2 Linux
The following steps explain how to build democonverter in Linux environment:

1. Do one of the following:
• For Linux 64 bit: Change the current working directory to one of the build

directories, by typing one of the following:
– cd democonverter.build/pentiumlinux_64_DEVELOP
– cd democonverter.build/pentiumlinux_64_EXPORT

NOTE: The GNU C Compiler must be available in the path.

2. Type the make command.

5.3 Using Democonverter

5.3.1 Basic Command-Line Initialization
The following steps explain how to initialize Democonverter from a command line
window:

1. Set the root directory to the SDK delivery.

2. To set up Distiller parameters with job options, type the following:

democonverter -efi +n -O . -B joboptionfile.joboption
postscript.ps

For information on the Democonverter command line format and options, type
democonverter -h at the command prompt.

Using Adobe PDF Converter SDK 39

Building and Using Democonverter
Democonverter PAP Font Support (Windows only)

5

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

5.3.2 Specifying Pathnames in Command Lines
This section describes requirements for specifying pathnames in democonverter
command lines. See democonverter.c for examples.

General Pathname Requirements
Pathnames must have the following characteristics:
• Case-sensitive
• Standard characters
• On Windows, absolute pathnames must include the hard drive.

Platform-Specific Separators
Pathnames in democonverter command lines must use pathname separators
appropriate for the platform.
An example of the Windows command line to set the output directory follows:
-O diskX:\path\mydir\

-O diskX:\path\mydir\myfile

Or for a relative pathname:
-O .\path\mydir\

-O .\path\mydir\myfile

An example of the Linux command line to set the output directory follows:
-O /diskX/Users/myusername/documents/mydir/

-O /diskX/Users/myusername/documents/mydir/myfile

See democonverter.c for examples.

5.4 Democonverter PAP Font Support (Windows only)
Four separate builds of democonverter (containing both debug and release builds)
and several supporting files have been added to the Windows version of the Adobe
PDF Converter SDK to allow PAP font downloading. The builds are:
• democonverter - Win32 Debug
• democonverter - Win32 Release
• democonverter - Win32 NOPAP Debug
• democonverter - Win32 NOPAP Release

Building and Using Democonverter
Democonverter PAP Font Support (Windows only)

5

40 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

The supporting PAP files are:
• normpap.lib

• demofepapwin32.c

• demopap.c

AppleTalk Phase 2 must be loaded on the system in order for the PAP-enabled
democonverter to work properly.
The parameter APPLETALK_SUPPORT must be set to 1 in the project to build PAP
related code. If APPLETALK_SUPPORT is set to 0, then PAP will not be active.
To avoid major changes to demomain.c, a dummy file, empty.ps (provided) must
be present in the democonverter working directory for the AppleTalk demo to run

NOTE: AppleTalk does not run on Microsoft Windows 98, Windows ME, or Windows
XP Professional. If you need to create a PAP-enabled client, you must use
Windows NT 4.0, Windows 2000 Server, or Windows 2003 Server.

Using Adobe PDF Converter SDK 41
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

6 Distiller Parameters

This section describes the default Distiller parameter values established by the Adobe
PDF Converter SDK, how you can obtain a list of the current parameter values, and
how your client software can set parameter values using the setdistillerparams
operator.

6.1 Listing of Default Parameter Values
Example 6.1 lists the default Distiller parameter values that the Adobe PDF Converter
SDK establishes with its PostScript component. You can override those values by
modifying the startup file your client software provides to the Adobe PDF Converter
SDK. The startup file is specified in the startupFile field of the
NSClientConfig structure passed to NormalizerServerInit().

NOTE: This list of defaults may change in future release, and it can even be changed
by a badly behaved PostScript application. If you need to determine the
current, true list of default Distiller parameter values, you can extract them by
processing a PostScript job such as showdefaults.ps shown in
Example 6.2.

Distiller Parameters
Listing of Default Parameter Values

6

42 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

EXAMPLE 6.1 Default Distiller parameter values

<<
 /LockDistillerParams false
 /PDFXTrimBoxToMediaBoxOffset [
 0
 0
 0
 0
]

 /DownsampleMonoImageMask true
 /CannotEmbedFontPolicy /Warning
 /DoThumbnails false
 /AntiAliasMonoImages true
 /InternalDropAllImageData false
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>

 /CalRGBProfile (sRGB IEC61966-2.1)

 /GrayImageMinResolution 150
 /MaxSubsetPct 100
 /AllowTransparency false
 /CropGrayImages true
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>

 /EncodeColorImages false
 /CropColorImages true
 /GrayImageMinResolutionPolicy /OK
 /GrayImageFilter /DCTEncode
 /CoreDistVersion 0
 /Optimize true
 /EmitDSCWarnings false
 /ParseDSCCommentsForDocInfo true
 /AllowPSXObjects true
 /CalGrayProfile (None)

 /DSCReportingLevel 0
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15

Using Adobe PDF Converter SDK 43

Distiller Parameters
Listing of Default Parameter Values

6

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

 >>

 /GrayImageDownsampleThreshold 1.5
 /CompressObjects /Off
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>

 /PDFXSetBleedBoxToMediaBox true
 /PreserveFlatness true
 /MonoImageResolution 300
 /UsePrologue false
 /GrayImageDict <<
 /VSamples [
 2
 1
 1
 2
]

 /QFactor 0.5
 /HSamples [
 2
 1
 1
 2
]

 /Blend 1
 >>

 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)

 /AutoFilterColorImages true
 /ColorImageDepth -1
 /sRGBProfile (sRGB IEC61966-2.1)

 /PreserveDICMYKValues true
 /PDFXTrapped /False
 /ColorImageAutoFilterStrategy /JPEG
 /PreserveOverprintSettings true
 /UCRandBGInfo /Preserve
 /AutoRotatePages /None
 /PDFXOutputIntentProfile ()

 /EmbedAllFonts false
 /CompatibilityLevel 1.3

Distiller Parameters
Listing of Default Parameter Values

6

44 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

 /PassThroughJPEGImages false
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket true
 /ColorImageDownsampleType /Average
 /ColorSettingsFile ()

 /ColorImageDownsampleThreshold 1.5
 /CreateJDFFile false
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /ParseDSCComments true
 /PreserveEPSInfo false
 /PDFXRegistryName ()

 /MonoImageMinResolution 1200
 /GrayACSImageDict <<
 /VSamples [
 2
 1
 1
 2
]

 /QFactor 0.76
 /HSamples [
 2
 1
 1
 2
]

 >>

 /InternalOffOptimizations 0
 /PDFXCompliantPDFOnly false
 /GrayImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /VSamples [
 2
 1
 1
 2
]

 /QFactor 0.76
 /HSamples [
 2
 1

Using Adobe PDF Converter SDK 45

Distiller Parameters
Listing of Default Parameter Values

6

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

 1
 2
]

 >>

 /PreserveCopyPage true
 /EncodeMonoImages false
 /MonoImageMinResolutionPolicy /OK
 /ColorImageMinResolutionPolicy /OK
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments true
 /NeverEmbed [
]

 /InternalForceUserUnit 0
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 72
 /InternalDisablePathOptimizer false
 /AutoPositionEPSFiles false
 /EndPage -1
 /TransferFunctionInfo /Preserve
 /MonoImageDepth -1
 /CropMonoImages true
 /ColorImageMinResolution 150
 /EncodeGrayImages false
 /EmbedOpenType false
 /ColorImageMinDownsampleDepth 1
 /DownsampleGrayImages false
 /Description <<
 >>

 /ConvertImagesToIndexed false
 /PresumeRGBRepresentationIsLossless false
 /PDFXOutputCondition ()

 /AllowRelativePathOps false
 /MonoImageDict <<
 /K -1
 >>

 /PassThroughFlateImages false
 /MonoImageDownsampleThreshold 1.5
 /Binding /Left
 /DetectCurves 0.1
 /MonoImageDownsampleType /Average
 /DownsampleMonoImages false
 /GrayImageResolution 72

Distiller Parameters
Listing of Default Parameter Values

6

46 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

 /PDFX1aCheck false
 /PDFX3Check false
 /AlwaysEmbed [
]

 /ImageMemory 1048576
 /SyntheticBoldness 1.0
 /AutoFilterGrayImages true
 /SubsetFonts true
 /OffOptimizations 0
 /PDFXOutputConditionIdentifier ()

 /OPM 1
 /DefaultRenderingIntent /Default
 /ParseICCProfilesInComments true
 /MonoImageFilter /CCITTFaxEncode
 /EmbedJobOptions false
 /ColorImageFilter /DCTEncode
 /PDFXNoTrimBoxError true
 /GrayImageMinDownsampleDepth 2
 /PDFXBleedBoxToTrimBoxOffset [
 0
 0
 0
 0
]

 /DownsampleColorImages false
 /PreserveHalftoneInfo true
 /UseFlateCompression true
 /ASCII85EncodePages false
 /ColorImageDict <<
 /VSamples [
 2
 1
 1
 2
]

 /QFactor 0.5
 /HSamples [
 2
 1
 1
 2
]

 /Blend 1
 >>

Using Adobe PDF Converter SDK 47

Distiller Parameters
Supported values of CheckCompliance key

6

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

 /CompressPages false
 /CheckCompliance [
 None
]

>>

NOTE: Adobe PDF Converter SDK does not support the PDFX1aCheck and
PDFX3Check Distiller parameters. As there are more ways of PDF X and A
checking available in PDF Converter SDK, a name value in an array called
CheckCompliance is used instead of the PDFX1aCheck and PDFX3Check
Booleans.

6.2 Supported values of CheckCompliance key
/None
/PDFA:DRAFT
/PDFX1a:2001
/PDFX1a:2003
/PDFX3:2002
/PDFX3:2003
/PDFX4:2010

EXAMPLE 6.2 showdefaults.ps

%!PS
% program to dump a given dictionary

/string_buf 300 string def
/print_simple
{

dup type /stringtype ne { string_buf cvs } if print
} bind def
/indent -1 def
/do_indent { 0 1 indent { pop () print } for } def

/print_dict
{

dup type /dicttype eq
{

do_indent (<<\n) print
/indent indent 1 add def
{

do_indent exch print_dict () print print_dict (\n)
print

} forall

Distiller Parameters
Setting Distiller Parameter Values

6

48 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

/indent indent 1 sub def
do_indent (>>\n) print

}
{

dup type dup /arraytype eq exch /packedarraytype eq or
{

do_indent dup xcheck { ({\n) } { ([\n) } ifelse print
do_indent

/indent indent 1 add def
dup { print_simple (\n) print do_indent } forall
/indent indent 1 sub def
do_indent xcheck { (}\n) } { (]\n) } ifelse print

}
{

dup type /nametype eq
{

dup xcheck not { (/) print } if print_simple ()
print

}
{

dup type /stringtype eq
{

(\() print print_simple (\)\n) print
}
{

dup type /nulltype eq
{

pop (null) print_simple
}
{

print_simple
} ifelse

} ifelse
} ifelse

} ifelse
} ifelse

} bind def

currentdistillerparams print_dict
%%EOF

6.3 Setting Distiller Parameter Values
You can change the value of a Distiller parameter through any of the mechanisms
described in Table 6.1. Each subsequent method changes the value set by any

Using Adobe PDF Converter SDK 49

Distiller Parameters
Setting Distiller Parameter Values

6

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

proceeding method. For example, Distiller parameters modified using method 3
override values established using method 2.

NOTE: Some Distiller parameters are not supported by the Adobe PDF Converter
SDK. See “Differences in supported Distiller parameters” on page 16 for more
information.

6.3.1 Adding PostScript Code to startupNORM.ps
You can augment startupNorm.ps with PostScript code that changes any of the
Distiller parameter default values except LockDistillerParams. Use the
setdistillerparams PostScript key-word pair to change the Distiller parameter values.
For example:

<< /CompressPages true >> setdistillerparams

startupNorm.ps is executed as an exitserver PostScript job. As a result, the
Distiller parameter values it establishes remain until changed by another method.

6.3.2 Submitting an exitserver Job to Adobe PDF Converter SDK
As in Section 6.3.1, you can submit an exitserver PostScript job to the Adobe PDF
Converter SDK, which uses the setdistillerparams PostScript key-word pair to change
any of the Distiller parameter default values except LockDistillerParams. However, if
this method is used during a PostScript job, changes to the parameters listed in the
section “Caveats for Setting Distiller Parameters” in Adobe Technical Note 5151,

TABLE 6.1 Precedence of mechanisms for changing Distiller parameter values

Method

1. Adding PostScript code or a PostScript file reference to the file
startupNORM.ps, as described in “Adding PostScript Code to
startupNORM.ps”.

2. Submitting an exitserver job to the Adobe PDF Converter SDK, as described in
“Submitting an exitserver Job to Adobe PDF Converter SDK”.

3. Providing job options, as described in “Providing Job Options (Preferred
Method)”. Parameters set in this manner remain in effect through the end of the
job.

4. Augmenting the current job with PostScript code that uses setdistillerparams or
setpagedevice PostScript key-word pairs, as described in “Setting Distiller
Parameters from the Current Job”. Parameters set in this method remain in
effect through the end of the job.

Distiller Parameters
Setting Distiller Parameter Values

6

50 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Acrobat Distiller Parameters have no effect on the current job. Rather, such settings
become the new default values for the next and subsequent jobs.

6.3.3 Providing Job Options (Preferred Method)
On a per-job basis, your client may set Distiller parameters using the following
method depending on the value of the runMethod field provided in the
NSJobParams structure. That structure is one of the arguments passed to
NormalizerServerRunJob().
• By providing job options. If runMethod is set to normRunJobOptions, the

Adobe PDF Converter SDK uses client-provided job options to set Distiller
parameters for the current job. Adobe PDF Converter SDK obtains the job options
from the jobOptions argument, or if not provided, by invoking the
bufGetJobOptions callback.

The above method is preferred because it allows you to set all Distiller parameters
and, unlike the startup PostScript or exitserver methods, it supports the
LockDistillerParams parameter.

NOTE: Certain Distiller parameters should be used only in job options. For more
information and a complete listing of these parameters, see the section
“Caveats for Setting Distiller Parameters” in Adobe Technical Note 5151,
Acrobat Distiller Parameters.

6.3.4 Setting Distiller Parameters from the Current Job
The PostScript document being normalized may contain setdistillerparams or
setpagedevice commands to modify certain Distiller parameter values. If such code is
not already part of the job, your client may add it when it responds to the
NSBufferGetPS() or NSProcessComment() callbacks. The client should add
the PostScript segment ahead of the PostScript stream for the job.

NOTE: If the job options sets the Distiller parameter LockDistillerParams to TRUE, any
setdistillerparams key-word pairs appearing in the current job are ignored.
LockDistillerParams can only be set using the job options method. That is, it
cannot be set using an exitserver job. As a result, LockDistillerParams always
reverts to FALSE at the end of a job.

Using Adobe PDF Converter SDK 51
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

7 Interactions Between Adobe PDF
Converter SDK and Callbacks

This chapter describes the interactions between the Adobe PDF Converter SDK and
the callbacks it invokes to transfer data and to relay other information, such as
setpagedevice PostScript key-word pairs. Chapter 13, “Functions and Callbacks”
describes the arguments and returned values declared for each callback.
A separate set of client file callbacks is used to interface with the Adobe PDF
Converter SDK when the client manages I/O. For a discussion of these callbacks, see
Chapter 8, “Using the NSClientFile API”.

7.1 Callbacks for Transferring Data between the Adobe PDF
Converter SDK and a Client
This section describes the Adobe PDF Converter SDK-callback interaction for
transferring data between the Adobe PDF Converter SDK and the client. For each
callback, this section describes the functions the Adobe PDF Converter SDK expects
the callback to perform. For details on the callback arguments and returned values,
see Chapter 13, “Functions and Callbacks”.

7.1.1 How the Adobe PDF Converter SDK Uses Data Transfer Callbacks
Figure 7.1 contains a simplified flowchart that illustrates how the Adobe PDF
Converter SDK interacts with the data transfer callbacks when filePerPage is FALSE in
the NSJobParams structure, regardless of whether distillation is disabled. The
parameters chosen for the example in Figure 7.1 represent the simplest type of
interaction. Figure 7.2 through Figure 7.5 show the same interaction when the
filePerPage field is TRUE with distillation enabled.

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

52 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.1 Flowchart showing client and the Adobe PDF Converter SDK interaction
when filePerPage == FALSE and dynamicMode==FALSE

NormalizerServerRunJob

Is number of
bytes in buffer == 0

(end of job)

Call client’s
NSBufferGetPS
callback to get a
buffer of PS stream.

Yes
Return

Parameters

filePerPage == FALSE
sidelineImages == FALSE
sidelineEPS == FALSE

Convert PostScript
expressions into PDF
format and store result
in full-document PDF
file.

No

Call client’s
NSEndPage callback to
report page device keys
and other page info.

*At the end of a
page? Yes

No

* Adobe PDF Converter SDK actually makes this end-of-page check more frequently than shown.

Using Adobe PDF Converter SDK 53

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.2 Flowchart showing client and the Adobe PDF Converter SDK interaction
when filePerPage == TRUE (1 of 4)

NormalizerServerRunJob

Yes
Return

Parameters

filePerPage == TRUE
sidelineImages == TRUE
sidelineEPS == TRUE

Is number of
bytes in buffer ==

0? (end of job)

B See Figure 7.3 on page 54

A

Augment the PostScript
stream/file with any external
EPS or image files
referenced from that stream.

No

Call client’s
NSBufferGetPS
callback to get a
buffer of PS stream.

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

54 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.3 Flowchart showing client and the Adobe PDF Converter SDK interaction
when filePerPage == TRUE (2 of 4)

No

Yes

Yes

* Adobe PDF Converter SDK actually makes these checks more frequently than shown.

** Reflecting the parameter settings, images and EPS segments are not included in the full-document
PDF file.

Yes
Write out PDF page
stream, as shown
by Figure 7.5 on
page 56.

Sideline data, as
shown by Figure 7.4
on page 55.

*Is next in buffer
an EPS segment?

End of buffer?

*End of page?

No

No

**Convert PostScript
expressions into PDF
format and store result
in a full-document

A

B

No

Have we complet-
ed a font or image

dictionary?

Sideline dictionary,
as shown by
Figure 7.4 on page
55.

Yes

See Figure 7.2 on page 53

Parameters

filePerPage == TRUE
sidelineImages == TRUE
sidelineEPS == TRUE

Using Adobe PDF Converter SDK 55

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.4 Flowchart showing client and the Adobe PDF Converter SDK interaction
when filePerPage == TRUE (3 of 4)

Yes

DId buffer
contain the end of

the EPS or
image?

Call client’s
NSBufferGetPS
callback to get a
buffer of PS stream.

No

Call client’s
NSCreateExternal-
File callback.

Call client’s
NSBufferHandOff
callback.

Call client’s
NSCloseExternalFile
callback.

End

Sideline data

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

56 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.5 Flowchart showing client and the Adobe PDF Converter SDK interaction
when filePerPage == TRUE (4 of 4)

Call client’s NSStartPage
callback to request the client
to set up a file.

Call client’s
NSBufferHandOff callback
multiple times.

Call client’s NSEndPage
callback to request the client
to close the file and to report
page device keys and other
page info.

End

Write out page

Using Adobe PDF Converter SDK 57

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

The following flowcharts are applicable when dynamic mode is ON.

FIGURE 7.6 Flowchart showing client and the Adobe PDF Converter SDK interaction
when dynamicMode == TRUE (1 of 4)

NormalizerServerRunJob

Yes
Return

Parameters
dynamicMode == TRUE
sidelineImages == TRUE
sidelineEPS == TRUE

Is number of
bytes in buffer ==

0? (end of job)

B See Figure 7.7 on page 58

A

Augment the PostScript
stream/file with any external
EPS or image files
referenced from that stream.

No

Call client’s
NSBufferGetPS
callback to get a
buffer of PS stream.

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

58 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.7 Flowchart showing client and the Adobe PDF Converter SDK interaction
when dynamicMode == TRUE (2 of 4)

No

Yes

Yes

* Adobe PDF Converter SDK actually makes these checks more frequently than shown.

** Reflecting the parameter settings, images and EPS segments are not included in the full-document
PDF file.

Yes
Write out PDF
page stream, as
shown by
Figure 7.5 on page
56.

Sideline data, as
shown by Figure 7.4
on page 55.

*Is next in buffer
an EPS segment?

End of buffer?

*End of page?

No

No

**Convert PostScript
expressions into PDF
format and store result
in a full-document

A

B

No

Have we complet-
ed a font or image

dictionary?

Sideline dictionary,
as shown by
Figure 7.4 on page
55.

Yes

See Figure 7.6 on page 57

Parameters
dynamicMode == TRUE
sidelineImages == TRUE
sidelineEPS == TRUE

write file upto this
page?

Yes

Using Adobe PDF Converter SDK 59

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.8 Flowchart showing client and the Adobe PDF Converter SDK interaction
when dynamicMode == TRUE (3 of 4)

Yes

DId buffer
contain the end of

the EPS or
image?

Call client’s
NSBufferGetPS
callback to get a
buffer of PS stream.

No

Call client’s
NSCreateExternal-
File callback.

Call client’s
NSBufferHandOff
callback.

Call client’s
NSCloseExternalFile
callback.

End

Sideline data

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

60 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

FIGURE 7.9 Flowchart showing client and the Adobe PDF Converter SDK interaction
when dynamicMode == TRUE (4 of 4)

7.1.2 Private Client Data for Information about the Destination File
The data transfer callbacks pass a pointer of type NSFileDataPtr to a private structure,
which allows the client to associate private information with each callback. The client
can use this structure to store file data. Generally, the Adobe PDF Converter SDK
does not request the client to have multiple files open simultaneously; however your
implementation of the client should not depend on that.

7.1.3 Preparing to Transfer a PDF Page Stream/File
The Adobe PDF Converter SDK invokes the NSStartPage() callback to inform the client
that it is ready to begin transferring a PDF stream for a page. The Adobe PDF
Converter SDK invokes NSStartPage() only if filePerPage in the NSJobParams structure
is TRUE and distillation is enabled.

Call client’s APCStartPage
callback to request the client
to set up a file.

Call client’s
NSBufferHandOff callback
multiple times.

As we have already called APCEnd-
Page() for this page, just call APCEnd-
File() to gracefully close the file.
page device keys and other info have
already been reported.

End

Write out page

Using Adobe PDF Converter SDK 61

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

In the function invoked by the NSStartPage() callback, the client should open a file in
which to store the PDF page stream produced by the Adobe PDF Converter SDK.
The callback returns an integer value indicating the success or failure of creating the
requested file.

7.1.4 Completing the Transfer of Content into a PDF Page File
The Adobe PDF Converter SDK invokes the NSEndPage() callback to indicate that it
has finished processing a page, regardless of whether distillation is enabled or
filePerPage in the NSJobParams structure is TRUE. As part of this call, the Adobe PDF
Converter SDK reports a linked list of key-value pairs representing the page device
keys that have appeared in the page. See the SPDKeyValue structure in Chapter 18,
“Structures and Enumerations”. In addition the Adobe PDF Converter SDK provides
plate color information and page label information in an NSPageInfo structure that
appears in PostScript and DSC comments on the page.
If filePerPage in the NSJobParams structure is TRUE and distillation is enabled, the
client should close the PDF page file it created for the page.

7.1.5 Preparing to Transfer the Contents of an External File
The Adobe PDF Converter SDK invokes the NSCreateExternalFile() callback to inform
the client that it is ready to begin transferring embedded image or EPS data to an
external file. In response, the client must create the file and return a NSFileDataPtr
handle to that file.
The sidelineType argument to NSCreateExternalFile() is an enumerated value of type
NormalizerSidelineType, which allows the client to assign file names that reflect the
type of data (image or EPS) to be stored in the file.
Normally, the client places the external file in the same directory as the PDF files, and
the file name is a relative path. The client must ensure that the file name provided
conforms with the names described in Section 4.5 of Portable Document Format,
Version 1.3.
The Adobe PDF Converter SDK invokes NSBufferHandOff() if distillation is enabled
and if the Adobe PDF Converter SDK detects any of the following conditions:
• PostScript stream/file contains embedded EPS segments and sidelineEPS in the

NSJobParams structure is TRUE
• PostScript stream/file contains embedded images and sidelineImages in the

NSJobParams structure is TRUE
NSCreateExternalFile() returns an integer that indicates the client’s success at creating
the requested file.

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client

7

62 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

7.1.6 Completing Transfer of the Contents of an External File
The Adobe PDF Converter SDK invokes the NSCloseExternalFile() callback to inform
the client that it has finished transferring the PDF data into the external file. The client
should respond by closing the previously opened external file.
NSCloseExternalFile() does not return a result.

7.1.7 Getting a Buffer of PostScript Stream
The Adobe PDF Converter SDK invokes the NSBufferGetPS() callback to request a
buffer of a PostScript stream/file. The client is responsible for allocating the buffer into
which the data is read. The number of bytes placed in the buffer on each call to this
callback function is at the discretion of the client. To provide the best performance,
you should carefully choose the number of bytes placed in the buffer. A value of four
times the physical disk block size is a good starting point.
The client should not reuse or free a buffer provided in the NSBufferGetPS() callback
until the Adobe PDF Converter SDK again calls the NSBufferGetPS() callback or the
job completes.
NSBufferGetPS() returns an integer (0) to indicate the client’s success at obtaining the
next buffer of PostScript stream/file.

7.1.8 Handing Off a Buffer of PDF or Other Stream
The Adobe PDF Converter SDK invokes the NSBufferHandOff() callback multiple
times to send the client either PDF streams for individual pages or data to be stored in
external files. The Adobe PDF Converter SDK invokes NSBufferHandOff() if
distillation is enabled and the following 1-bit fields are set in the NSJobParams
structure in the circumstances described:
• filePerPage in the NSJobParams structure is TRUE and the Adobe PDF Converter

SDK finishes interpreting a page. (the Adobe PDF Converter SDK first invokes the
NSStartPage() callback.)

• sidelineEPS is TRUE and Adobe PDF Converter SDK encounters an embedded
EPS segment. (Adobe PDF Converter SDK first invokes the NSCreateExternalFile()
callback.)

• sidelineImages is TRUE and Adobe PDF Converter SDK detects an embedded
image. (Adobe PDF Converter SDK first invokes the NSCreateExternalFile()
callback.)

Using Adobe PDF Converter SDK 63

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks That Relay Information to the Client

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

7.2 Callbacks That Relay Information to the Client
The Adobe PDF Converter SDK uses information-related callbacks to relay
information to the client. These callbacks do not require a response from the client.
The following sections describe the situations in which the Adobe PDF Converter
SDK calls these callbacks.

7.2.1 Passing Text Strings that Describe Fatal Errors
The Adobe PDF Converter SDK calls the NSErrorMsg() callback to send the client a
character string that describes fatal errors. After calling NSErrorMsg(), the
NormalizerServerRunJob() function returns the NormalizerResult enumerator,
indicating the type of error.
NSErrorMsg() does not return any results.

7.2.2 Passing Text Strings that Describe PostScript Interpreter Errors
The NSBackChanMsg() callback implements the PostScript Interpreter’s standard
output device.
The Adobe PDF Converter SDK calls NSBackChanMsg() to send the client character
strings that describe errors encountered by the PostScript Interpreter. Errors that
cause a job to be terminated are reported in strings that begin with%% [Error. All other
messages are warnings and do not signify job failure. After calling NSBackChanMsg()
to report an error that causes a job to be terminated, the NormalizerServerRunJob()
function returns the normPostScriptError enumeration value. NSBackChanMsg() does
not return any results.

7.2.3 Reporting Progress
The Adobe PDF Converter SDK calls the NSProgress() callback every time the
PostScript Interpreter processes the number of PostScript operations indicated in the
progressQuantum field of the NSClientConfig structure. The client can use this callback
to perform communication tasks or possibly to abort the current job.
NSProgress() does not return any results.

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Modifying DSC and PostScript

7

64 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

7.3 Callbacks for Modifying DSC and PostScript
The Adobe PDF Converter SDK provides two callbacks for reporting the appearance
of a DSC comment and for affecting the DSC and the PostScript stream. Table 7.1
compares the tasks performed by each callback.

When the Adobe PDF Converter SDK encounters a DSC comment, it sequentially
invokes the following non-NULL callbacks:

1. NSExternalProcessCommentSetupProc()

2. NSExternalProcessCommentProc()

3. NSExternalProcessCommentCleanupProc()

4. NSProcessComment()

TABLE 7.1 Comparison of NSProcessComment() and
NSExternalProcessCommentProc()

Capability
NSProcess
Comment()

NSExternal
ProcessCom
mentProc()

Change the DSC being reported

Add new DSC and/or PostScript

Skip PostScript from the DSC being reported to
the next DSC

Immediately execute new PostScript

Interpret client-provided DSC
(Not supported by either callback)

Interpret client-provided externalcommand
operator.

Called for each DSC comment in a sequence,
where % begins a line. For example:

%% comment 1
% comment 2
% comment 3

Provision for setup and cleanup callbacks

Using Adobe PDF Converter SDK 65

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Modifying DSC and PostScript

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

7.3.1 Keying Off a DSC Comment to Skip PostScript or to Execute
Client-Provided PostScript
The Adobe PDF Converter SDK invokes the NSExternalProcessCommentProc()
callback to report individual DSC comments that appear in the PostScript file/stream.
The arguments in NSExternalProcessCommentProc() allow you to direct Adobe PDF
Converter SDK to do the following:
• Skip any PostScript code appearing between the DSC comment and the next DSC

comment.
• Introduce PostScript code, which is immediately executed.
NSExternalProcessCommentProc() is typically used to replace one standard PostScript
sequence with another, when the original sequence can be identified by a particular
DSC comment.

NOTE: NSExternalProcessCommentProc() is provided on all platforms but has been
tested only on Windows platforms.

When the Adobe PDF Converter SDK invokes your implementation of
NSExternalProcessCommentProc(), it provides a pointer to the callback
NSPSExecuteStringProc(). If you wish to provide a PostScript segment, invoke
NSPSExecuteStringProc(), referencing the PostScript segment in the sole argument,
buf. PostScript executed by NSExternalProcessCommentProc() is not parsed for DSC
comments. You may release the buffer when NSPSExecuteStringProc() returns.

NOTE: Please be aware the the following limitations on the PostScript code your client
software provides through NSPSExecuteStringProc():
• Must not modify the PostScript graphic state.
• Must be one series of complete PS operations.

Any operators cannot be terminated in the middle of the operator. For
instance, if you want to process "0 0 moveto", you can do calling the function
twice with "0 0" and "moveto". But you cannot do "0 0 mo" and "veto".

• Must not include certain PostScript operators if the Adobe PDF Converter
SDK is in the middle of interpreting font resources. Such operators include
save/restore, gsave/grestore. They raise a PostScript error. (A complete list
of restricted operators is not available at this time.)

• AutoPositionEPSFiles job option may not work if the user performed any
graphic operations, including the pdfmark operator, before Adobe PDF
Converter SDK processes %%EndProlog. If AutoPositionEPSFile is true,
the Adobe PDF Converter SDK core code checks the display list count
when it encounters %%EndProlog, and then sets the appropriate page
settings for locating the EPS file automatically.

The NSExternalProcessCommentSetupProc() and
NSExternalProcessCommentCleanupProc() callbacks associated with
NSExternalProcessCommentProc() are optional. If your client provides

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for Modifying DSC and PostScript

7

66 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSExternalProcessCommentCleanupProc(), Adobe PDF Converter SDK invokes it
regardless of the success or failure of NSExternalProcessCommentProc().

7.3.2 Reporting and Allowing Substitutions for DSC Comments
The Adobe PDF Converter SDK invokes the NSProcessComment() callback to report
individual DSC comments that appear in the PostScript file/stream. The arguments in
NSProcessComment() allow you to direct Adobe PDF Converter SDK to replace the
DSC comment with any combination of DSC comments and PostScript code.
Typically, this callback is used to correct commonly mis-represented DSC comments;
however, it can also be used to introduce entire segments of PostScript code.
The Adobe PDF Converter SDK invokes the NSProcessComment() callback to parse
enclosed comments in a PostScript job provided the PostScript is a conforming
document, as indicated by the appearance of %!PS-Adobe-2.0, %!PS-Adobe-3.0, or
%!PS-Adobe-3.1 in the PostScript stream/file.

NOTE: Non-conforming DSC comments may cause the DSC Interpreter (part of the
PostScript Interpreter) to stop reporting comments. The DSC convention is
specified in PostScript Language Document Structuring Conventions (DSC)
Specification version 3.0, Technical Note #5001, 9/25/92. This technical note is
available from http://partners.adobe.com/asn/.

The Adobe PDF Converter SDK calls the NSProcessComment() callback whenever it
encounters comments that occur outside prologues. NSProcessComment() is called for
each group of comments, even when those comments are part of embedded fonts,
embedded EPS segments, external EPS files referenced from the PostScript
stream/file, embedded image streams, or external image streams referenced from the
PostScript stream/file. (Adobe PDF Converter SDK does not report comments for
external fonts referenced from the PostScript stream/file.)
The Adobe PDF Converter SDK reports each comment in a sequence of comments,
the first of which begins with “%” followed by a non-blank character and the
subsequent of which begin with “%” followed by any character. In the following
example, the Adobe PDF Converter SDK invokes NSProcessComment() three times to
report comments 1, 2, and 3, respectively. However, it does not invoke the function for
comment 4 or 5.

%% comment 1
% comment 2
% comment 3
expression % comment 4
expression
% comment 5

The client can either read the comment for informational purposes or request Adobe
PDF Converter SDK to replace the comment with other data. If the client chooses the
latter, it provides a buffer of data, usually PostScript expressions, which Adobe PDF
Converter SDK substitutes for the comment.

http://partners.adobe.com/asn/

Using Adobe PDF Converter SDK 67

Interactions Between Adobe PDF Converter SDK and Callbacks
Callback for Responding to the externalcomm and PostScript Operator

7

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

7.4 Callback for Responding to the externalcomm and
PostScript Operator
The NSExternalCommandProc() callback allows interaction between the PostScript
program and your client software. Adobe PDF Converter SDK invokes the
NSExternalCommand() callback when a PostScript language program executes the
key-word pair externalcommand. The combination of externalcommand in a
PostScript program and an NSExternalCommand() implementation allows the
PostScript program to communicate directly with Adobe PDF Converter SDK.
If the callback is set to NULL in the NSClientConfig structure, an internal callback is
used, which does nothing.
The externalcommand operator takes two string operands: a command string and a
response string. To execute externalcommand, the PostScript code should look
something like this:

/commandstr 256 string def
/responsestr 256 string def
...
commandstr responsestr /CPSI /ProcSet findresource /externalcommand
get exec

The contents of the command string are stored in command[0:commandLength-1]. If
the command requires a response, Adobe PDF Converter SDK stores its response in
response[0:*responseLength-1].
Because *responseLength will be the length of the PostScript substring that is pushed
onto the PostScript operand stack, Adobe PDF Converter SDK must set
*responseLength to be the exact length of the response string stored. Exceeding the
initial length set by *responseLength is a fatal error.
In Example 7.1, the text "Test the external command" is passed to the
ExternalCommand callback in the “command” parameter. The callback code can then
put data into the “response” parameter, which ends up on the stack for the PostScript
program to read.
The return value of the ExternalCommand callback is also returned on the stack
(converted to a boolean, although the function prototype is an unsigned int) as in the
PostScript command. The significance of the result your client supplies reflects the
result of the query posed by the command string.

Interactions Between Adobe PDF Converter SDK and Callbacks
Callbacks for handling fatal error conditions

7

68 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

EXAMPLE 7.1 externalcommand definition passed to ExternalCommand callback

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%begin
/exc 1183615869 internaldict /externalcommand get def

/dotest
{
 (Test the external command) 256 string
 % /CPSI /ProcSet findresource /externalcommand get dup == flush

 exc exec

 == == flush
} bind def

dotest
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end

For additional information on this callback see the CPSI Developer’s Companion.

7.5 Callbacks for handling fatal error conditions
If the Adobe PDF Converter SDK encounters a fatal error condition, it calls
NSExitProcessProc unless you explicitly set the callback to be NULL. If the Adobe PDF
Converter SDK encounters a fatal error it doesn’t understand, it calls
NSCantHappenProc unless you have explicitly set the callback to be NULL.

7.6 Callbacks for handling pageskip feature
When APC enables pageskip by calling APCPageSkipEnable API then APC calls
NSGetNextDeviceActivatePageNumber to get next postscript job page number for
which PDF page needs to be generated, At the end of job, APC calls
NSTotalNumberOfPages to inform client about total number of pages in the job.

Using Adobe PDF Converter SDK 69
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

8 Using the NSClientFile API

This chapter describes the NSClientFile API, including what it is, the functions and the
callbacks that are necessary for the client software to initiate actions.
The NSClientFile API is defined in the file apcif.h. For detailed descriptions of each
NSClientFile callback, see Chapter 14, “NSClientFile API”.

8.1 About the NSClientFile API
The NSClientFile API allows clients to override the Adobe PDF Converter SDK’s file
I/O methods for full-document PDF files.
By default the Adobe PDF Converter SDK performs its file operations using the
standard C runtime library provided on each platform. This is sufficient for many
purposes, but you may want to replace these methods for different reasons, such as:
• Improving performance
• Accessing unusual devices
• Accessing files with multibyte filenames
The NSClientFile API provides a method for the client to manage all I/O (including
read, write, and seek) on a file used by the Adobe PDF Converter SDK. The client
describes a client file using a structure that contains a file ID and a set of callbacks
that the Adobe PDF Converter SDK invokes for perform file I/O operations. A file ID is
a value used by the client to identify a particular file. The client references a client file
from the fullDocClientFile field in the NSJobParams structure. The client
passes the NSJobParams structure as an argument to the the Adobe PDF
Converter SDK when calling NormalizerServerRunJob().

8.2 File Size Limitations
Regardless of the method used for file I/O, the full-document PDF files produced by
the Adobe PDF Converter SDK can be no larger than 10 GBytes.

8.3 Selecting File I/O Methods
The NSJobParams structure provides two fields each for the full-document PDF file:
• Defined as a pathname. If non-NULL, the Adobe PDF Converter SDK uses the

standard C runtime library to access the particular file.

Using the NSClientFile API
Data That Describes a Client File

8

70 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

• Defined as an NSClientFile API. If the pathname is not provided, the Adobe PDF
Converter SDK uses the client-provided callbacks provided in an NSClientFile
structure to access the particular file.

It is important to note that, if the NSClientFile API is used, the client is responsible for
creating the full-document PDF file and for deleting it in the event the job fails.
To be consistent with the default behavior of the Adobe PDF Converter SDK core, the
client should delete the full-document PDF file if either of the following occurs:
• NormalizerServerRunJob() returns an error code.
• NormalizerServerRunJob() returns a success code but no pages have been

produced. The client would recognize when no pages have been produced by the
absence of calls to the NSEndPage() callback for the job.

8.4 Data That Describes a Client File
This section discusses the NSClientFile data that the client provides to the Adobe
PDF Converter SDK. The client provides the NormalizerServerRunJob()
function with a set of APIs in the fullDocClientFile field of the NSJobParams
structure.
The type definition for a client file follows:

typedef struct _t_NSClientFile
{
 NSClientFileID fd;
 NSClientFileProcs procs;

} NSClientFileRec, *NSClientFile;

A file ID may be either a pointer or an integer and is therefore represented as a union,
as follows:

typedef union { void *ptr; int index; } NSClientFileID;

Pointers to the OEM-provided callbacks are collected in the NSClientFileProcs
structure as follows:

typedef struct _t_NSClientFileProcs
 {
 NSReadProc ReadProc; /* Required */
 NSWriteProc WriteProc; /* Required */
 NSSeekProc SeekProc; /* Required */
 NSCloseProc CloseProc; /* Required */
 NSTruncateProc TruncateProc; /* Required */
 NSBufsizeProc BufsizeProc; /* Optional, may be set to NULL */
 } NSClientFileProcsRec, *NSClientFileProcs;

The specifications of the first five callbacks have exact counterparts in the POSIX
standard C runtime library. The NSBufsizeProc() callback is optional. You may
choose to implement it for optimization purposes.

Using Adobe PDF Converter SDK 71

Using the NSClientFile API
Data That Describes a Client File

8

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

The client does not provide a callback for opening a file; rather, the client should open
a file before directing the Adobe PDF Converter SDK to begin a job.

Using Adobe PDF Converter SDK 73
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

9 Font-Related Behavior

This chapter describes font-related behavior in the Adobe PDF Converter SDK,
including the font policy and how font-related parameters can affect performance. It
also provides some guidance on modifications you can make in your client software to
change font behavior when the specified font cannot be found.

9.1 Review of Parameters That Affect Font-Related Behavior
Parameters that affect font-related behavior in the Adobe PDF Converter SDK may be
defined in the following ways.
• Client configuration parameters. Table 9.1 reviews font-related parameters

supplied in the client configuration structure NSClientConfig. These definitions
are summarized from the detailed field descriptions. See NSClientConfig in
Chapter 18, “Structures and Enumerations”.

• Job parameters. Table 9.2 reviews such parameters supplied in the job data
structure, NSJobParams. These definitions are summarized from the detailed
field descriptions of the NSJobParams structure. See NSJobParams in
Chapter 18, “Structures and Enumerations”.

• Distiller parameters. Table 9.3 reviews such parameters supplied as Distiller
parameters. These definitions are summarized from Technical Note #5151,
Acrobat Distiller Parameters, found in the Acrobat SDK Documentation at
http://partners.adobe.com/asn.

There may be some interaction between job parameters and Distiller parameters. In
particular, the PostScript being converted may contain setdistillerparams instructions
that override the EmbedAllFonts Distiller parameter, as described in Table 9.2.
Further, the client may specify job parameters that cause the Adobe PDF Converter
SDK to override the CannotEmbedFontPolicy and EmbedAllFonts Distiller parameters,
as described in Table 9.3.

TABLE 9.1 Client Configuration Parameters Affecting Font-related Behavior

Field name Description

atmFile (Optional) References a location where the client stores the path
name for the ATM database file. The Adobe PDF Converter SDK
uses the information contained in this file to synthesize missing
fonts.

http://partners.adobe.com/asn

Font-Related Behavior
Review of Parameters That Affect Font-Related Behavior

9

74 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

hostfontSearchList A list of font directories to be searched for host fonts. It can
include the ATM font directory, the system font directory, the
printer CMAP directory, and the printer fonts directory. (The
directories must be in the form described in Section 5.3.2,
“Specifying Pathnames in Command Lines” on page 39.)
See fuller description on page 172

ignoreStdTTFonts If TRUE, Adobe PDF Converter SDK ignores the TrueType
versions of certain standard PostScript fonts (Appendix A). This
setting can also be changed by NormalizerNewHostFontList().
ignoreStdTTFonts corresponds to the Ignore
TrueType versions of standard PostScript fonts
button of the Acrobat Distiller-Font Locations
dialog.
See the fuller description on page 176.

resourceSearchList (Required) References a location containing the PostScript fonts
directory. The directory name typically is of the form fonts\.
You must set this field for backward
compatibility with PostScript programs. Use
hostfontSearchList (below) for the fonts\
directory and all other font directories.
See the fuller description on page 168

TABLE 9.2 Job Parameters Affecting Font-related Behavior

Field name Description

fontAllowMM If true, Adobe PDF Converter SDK attempts to synthesize
missing fonts, using metric information from the ATM font
database. If FALSE, Adobe PDF Converter SDK attempts to
replace any missing fonts with the font specified in the
fontDefaultName field (described below) or, if not provided,
with Courier.
Multiple Master fonts cannot be embedded. As a result, if
EmbedAllFonts is TRUE, the Adobe PDF Converter SDK does
not synthesize missing fonts, regardless of the value of
fontAllowMM.
fontAllowMM has no Distiller parameter counterpart.

TABLE 9.1 Client Configuration Parameters Affecting Font-related Behavior

Field name Description

Using Adobe PDF Converter SDK 75

Font-Related Behavior
Review of Parameters That Affect Font-Related Behavior

9

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

fontEmbedJobsFonts If true, the Adobe PDF Converter SDK embeds in the PDF file
fonts that are embedded in the PostScript. If FALSE, the Adobe
PDF Converter SDK embeds such fonts ONLY if the Distiller
parameters dictate embedding.
Regarding fonts that are referenced from but not embedded in the
PostScript, the Adobe PDF Converter SDK embeds such fonts
ONLY if the Distiller parameters dictate embedding.

TABLE 9.3 Distiller parameters affecting font-related behavior

Parameter name Description

AlwaysEmbed An array of font names that the Distiller should always embed.
There is no job parameter counterpart to AlwaysEmbed.

CannotEmbedFontPolicy Specifies how the Distiller should respond if a font cannot be
found or embedded. Possible values are:
• OK, ignore if a font cannot be found or embedded
• Warning, warn and continue if a font cannot be found or

embedded
• Error, terminate the current job if a font cannot be found or

embedded
If the client submits a job with EmbedAllFonts defined as TRUE,
the Adobe PDF Converter SDK defines CannotEmbedFontPolicy
as Error. If the client submits a job with EmbedAllFonts FALSE,
the Adobe PDF Converter SDK defines it as Warning.

EmbedAllFonts If true, Adobe PDF Converter SDK attempts to embed all the
document’s fonts in the full-document PDF file and to embed a
page’s fonts in its PDF page stream. If the Adobe PDF
Converter SDK is unable to embed a font, the job fails with an
invalidfont (typically) and NormalizerServerRunJob()
returns with the normPostScriptError enumeration value.

MaxSubsetPct The maximum percentage of font glyphs used before the
Distiller embeds the entire font, rather than a subset of the font.
There is no job parameter counterpart to MaxSubsetPct.

NeverEmbed An array of font names that the Distiller should not embed.
There is no job parameter counterpart to NeverEmbed.

TABLE 9.2 Job Parameters Affecting Font-related Behavior

Field name Description

Font-Related Behavior
Font Policy

9

76 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

9.2 Font Policy
Font policy is the set of rules that describe how the Adobe PDF Converter SDK uses
font-related parameters to determine its response to findfont operators (or
findresource operators that specify fonts) in the PostScript stream. Such rules dictate
how the Adobe PDF Converter SDK handles the following issues:
• Where to look for fonts
• Whether to embed specific fonts
• How to respond to missing fonts
• How to respond when a font cannot be embedded

PDFX1aCheck If true, verifies that all fonts can be embedded in order to
ensure compliance with the PDF/X-1a standard.
NOTE: Although Distiller 7.0 and later versions continue to
support the PDFX1aCheck Distiller parameter, PDF Converter
SDK does not support this Distiller parameter. Instead of the
PDFX1aCheck boolean, a name value in an array called
CheckCompliance, is used.

PDFX3Check If true, verifies that all fonts can be embedded in order to
ensure compliance with the PDF/X-3 standard.
NOTE: Although Distiller 7.0 and later versions continue to
support the PDFX3Check Distiller parameter, PDF Converter
SDK does not support this Distiller parameter. Instead of the
PDFX3Check boolean, a name value in an array called
CheckCompliance, is used.

PDFXCompliantPDFOnly If true, Distiller will produce a PDF document only if the
appropriate PDF/X compliance test(s) are passed.
NOTE: This parameter is ignored if the values returned by both
PDFX1aCheck and PDFX3Check are false.

SubsetFonts If true, the Distiller embeds only those font glyphs that are
used, rather than embedding the entire font.
There is no job parameter counterpart to SubsetFonts.

TABLE 9.3 Distiller parameters affecting font-related behavior

Parameter name Description

Using Adobe PDF Converter SDK 77

Font-Related Behavior
Font Policy

9

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

9.2.1 Where Adobe PDF Converter SDK Looks for Fonts
The Adobe PDF Converter SDK looks for fonts in the following locations (in order),
stopping when it finds a match:

1. PostScript virtual memory. Fonts embedded earlier1 in the PostScript stream are
saved to PostScript virtual memory.

2. PostScript (and TrueType) fonts in OEM resource folders. Such folders are
specified by the resourceSearchList field of the NSClientConfig struct. The
Adobe PDF Converter SDK finds matches by comparing FontName in the font
reference with FontName in the font.
The flag ignoreStdTTFonts of the NSClientConfig struct specifies whether
the Adobe PDF Converter SDK should consider the TrueType versions of certain
standard PostScript fonts (Appendix A). (The flag can also be specified as an
argument passed to NormalizerNewHostFontList()). If
ignoreStdTTFonts is FALSE, the Adobe PDF Converter SDK considers the
TrueType versions of the standard PostScript fonts, using whatever font it finds first
in the OEM resource folders.

3. Same as Step 2., but compares FontName in the font reference against the font
file’s name.

4. System resources.

9.2.2 Rules for Embedding
The following sections describe the rules the Adobe PDF Converter SDK uses to
determine whether to try to embed a font of a particular type.

NOTE: Fonts embedded in the PostScript file are embedded in the PDF file only if
embedding rules dictate that those font should be embedded. In other words,
the Adobe PDF Converter SDK does not embed a font in the PDF file simply
because that font is embedded in the PostScript file.

In general, if the Adobe PDF Converter SDK cannot embed a font that should be
embedded, it responds as specified in the Distiller parameter
CannotEmbedFontPolicy; however, some fonts must be embedded to produce a
readable PDF file, regardless of Distiller parameters. Adobe PDF Converter SDK
terminates a job with error when it cannot embed a font that must be embedded. The
following sections identifies those fonts that must be embedded.

1. Adobe PDF Converter SDK serially evaluates the PostScript stream. It cannot find fonts referenced at the beginning
of the stream but embedded at the end of the stream. PostScript streams with such problems are considered ill-formed.

Font-Related Behavior
Font Policy

9

78 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Type 1 and Type 2 Fonts
Adobe PDF Converter SDK embeds a Type1 font if the font is NOT in the
NeverEmbed list, the font is found (either embedded in the PostScript or available on
the host system), and at least ONE of the following conditions is true:
• fontEmbedJobsFonts is true and the font is embedded.
• EmbedAllFonts flag is true.
• The font is in the AlwaysEmbed list.
• The PostScript file uses the font for characters that are not included in the

Standard Latin Character Set.
• The font contains many glyph definitions (CharStrings dict length > 229 and

disableAutoT1Embed parameter in NSJobParams is false). Such fonts are usually
used for non-standard glyphs.

• The font contains few glyph definitions (CharStrings dict length < 115). Such fonts
are used for logos or special glyph sets, such as an all-capital letter font.

Type 3 Fonts
Type 3 fonts are always embedded. Type 3 fonts are used to represent non-standard
characters for which Acrobat is unable to create substitute fonts.

Determining Whether a Font is Embeddable
Adobe PDF Converter SDK may be unable to embed a font with any of the following
characteristics:
• It is a faux font generated by the PostScript job. (Faux fonts are fonts reproduced

using font metrics obtained from the ATM database.)
• Its permissions do not allow embedding, which would happen if license restrictions

were unsatisfied. License restrictions apply to certain TrueType™, OpenType, and
CJK fonts. Such permissions are expressed in a font’s fsType field.

9.2.3 Response to Missing Fonts
If the font is not embedded in the PostScript or if the Adobe PDF Converter SDK
cannot find the font on the host system, the Adobe PDF Converter SDK determines
whether to emulate the font using parameters in the ATM database or to instead use a
substitute font. More specifically, if all the following conditions are satisfied, the Adobe
PDF Converter SDK tries to duplicate the font using parameters from the ATM
database.
• fontAllowMM true
• EmbedAllFonts false
• font not in AlwaysEmbed list

Using Adobe PDF Converter SDK 79

Font-Related Behavior
PostScript SubstituteFont Key Influences Font Policy

9

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

• font is in the ATM database

Otherwise, the Adobe PDF Converter SDK uses the substitute font specified in
SubstituteFont or, if not provided, Courier.

9.2.4 Response to Unembeddable Fonts
If the Adobe PDF Converter SDK is unable to embed a font that appears in the
AlwaysEmbed list, it responds as directed in the Distiller parameter
CannotEmbedFontPolicy. If that parameter allows the Adobe PDF Converter SDK to
complete the job (CannotEmbedFontPolicy is OK or Warning), the Adobe PDF
Converter SDK produces a PDF file that provides information about the un-
embeddable font, including, if possible, information that allows Acrobat to create a
font substitution.

9.3 PostScript SubstituteFont Key Influences Font Policy
The initialization PostScript or job options you supply to the Adobe PDF Converter
SDK can establish whether the Adobe PDF Converter SDK should use a default font
and what that font should be. It does so by setting the value of the SubstituteFont
PostScript key-word pair. Adobe PDF Converter SDK uses that key to determine what
to do if it cannot find or replace (faux) the specified font.
Example 9.1 includes the section of Democlient code that establishes the default font
to be used when the Adobe PDF Converter SDK cannot find the specified font. It sets
the value of the PostScript SubstituteFont key-word pair to one of the following values:
• Null value. Specifies that default fonts should not be used. If any fonts are missing,

the job fails with an invalidfont (typically) and NormalizerServerRunJob()
returns with the normPostScriptError enumeration value.

• A font name (usually Courier). Specifies the name of the font to use in place of
fonts that cannot be found.

The PostScript code may be included in any of the following:
• Startup PostScript
• job prologue (if supported by the Adobe PDF Converter SDK client

implementation)
• exitserver job
• Job options

The section of code included in Example 9.1 creates job options that reflects settings
established through the Democlient UI.

Font-Related Behavior
PostScript SubstituteFont Key Influences Font Policy

9

80 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

EXAMPLE 9.1 Democlient code that establishes a new default font

else if(NULL == demoClientData.jobOptionFileName)
{

/* Set pagedevice parameters and default font. */
/* Note the setpagedevice must come after the setdistillerparams*/

sprintf(jobOptBuf,
"<< /PreserveOPIComments %s \
 /EmbedAllFonts %s \
 /CannotEmbedFontPolicy %s \
>> setdistillerparams \n\
<< /PageSize [%d %d] /HWResolution [%d %d] >>
setpagedevice \n",
demoClientData.preserveOPI ? "true" : "false",
demoClientData.fontEmbedAll ? "true" : "false",
demoClientData.fontEmbedAll ? "/Error" : "/Warning",
demoClientData.pageWidth, demoClientData.pageHeight,
demoClientData.pageXRes, demoClientData.pageYRes);

/* Set font policies */
if (!demoClientData.fontAllowDefault)
{

/* No default font allowed. */
sprintf(jobOptBuf,
"%s $error /SubstituteFont {} put\n",
jobOptBuf);

}
else
{

/* Default font allowed.
sprintf(jobOptBuf,
"%s $error /SubstituteFont { pop /%s } put\n",
jobOptBuf,
demoClientData.fontDefaultName == NULL

? "Courier" : demoClientData.fontDefaultName);
}

pJobParams->jobOptions = jobOptBuf;
}

Using Adobe PDF Converter SDK 81
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

10 Frequently Asked Questions

This chapter addresses frequently asked questions that are not directly answered in
the preceding chapters.

10.1 Locations of ICC Profile Folders (Windows)
Question. What are the locations of the ICC profile folders on Windows.
Answer. The following describes the typical locations of these folders, although the
exact location may vary because the Program Files folder can be moved or be on
a different drive if the OS is not on the C: drive.
• ICCPROFILES_USE_ADOBE_STANDARD_ONLY

Setting iccProfilesStandardFolders to the above value references Adobe
ACE folder.

• ICCPROFILES_ADOBE_COLOR_RECOMMENDED
Setting iccProfilesStandardFolders to the above value references the Adobe
recommended color profiles folder, which is typically located in the folder:
C:\Program Files\Common Files\
Adobe\Color\Profiles\Recommended

• ICCPROFILES_ADOBE_COLOR
Setting iccProfilesStandardFolders to the above value references the Adobe
color profiles folder, which is typically located in the folder:
C:\Program Files\Common Files\Adobe\Color\Profiles

• ICCPROFILES_SYSTEM_COLOR
Setting iccProfilesStandardFolders to the above value references the system
color profiles folder, which is typically located in the folder:
C:\WINDOWS\SYSTEM32\COLOR (on Windows XP)

C:\WINNT\STYSTEM32\COLOR (on all Windows 2000 and Windows
2003 server)

Frequently Asked Questions
Unexpected Failure

10

82 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

10.2 Unexpected Failure
Question. What causes democonverter to fail with the following error messages?

EPS sidelining is off
File-per-page is off
Image sidelining is off
Resolution is 2400
Embed All Fonts is ON
%%[Error: ioerror; OffendingCommand: setdistillerparams]%%
%%[Flushing: rest of job (to end-of-file) will be ignored]%%
%%[Warning: Empty job. No PDF file produced.] %%
Normalizer init failed (2)

Answer. The above error messages may be caused by the Adobe PDF Converter
SDK exceeding the space available in its scratch directory. The Adobe PDF Converter
SDK stores temporary files such as images to a scratch directory specified in the
scratchFileDirectory field of the NSClientConfig structure.
If you experience the above error messages, make sure there is space available in
the scratch file directory. If running democonverter, use the -S command to increase
the size of the scratch directory.

10.3 Full-document PDF File
Question. I’m using the PDF page streams produced by the Adobe PDF Converter
SDK, so I don’t need the full-document PDF files. Is there any way I can direct the
Adobe PDF Converter SDK to stop producing full-document PDF files?
Answer. Yes. This can be done in PDF Converter SDK. For this, a new one-bit field is
added to the NSJobParams struct.
fulldocfileCreation:1
Full document file creation cannot be disabled if the file per page option is off. Use ‘+/-
w’ with democonverter to enable/disable creation of a full document PDF.

10.4 Warning Message
Question. I see the following message every time the Adobe PDF Converter SDK
starts:

%%[Warning: Empty job. No PDF file produced.] %%

Why does the Adobe PDF Converter SDK produce that message and is there any
way to suppress it?
Answer. The Adobe PDF Converter SDK produces the message you describe when it
executes the file startup.ps, which of course contains no showpages; the
message has nothing to do with any actual jobs.

Using Adobe PDF Converter SDK 83

Frequently Asked Questions
Offending command warning

10

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

There is no way to suppress the message in the current version of the Adobe PDF
Converter SDK. However, your product code could prevent it from being reported.

10.5 Offending command warning
Question: I get the following (or similar) error on startup:

%%[Error: undefined; OffendingCommand: setdistillerparams; ErrorInfo:
CalCMYKProfile U.S. Web Coated (SWOP)]%%
%%[Flushing: rest of job (to end-of-file) will be ignored]%%
Error accessing color profile: U.S. Web Coated (SWOP)
%%[Warning: Empty job. No PDF file produced.] %%
Normalizer Server init failed (2)

Answer: The Adobe PDF Converter SDK is searching the ICC color profile directories
and cannot find the file USWebCoatedSWOP.icm. This is an indication that the files
located in the ICCProfiles directory of the democonverter deliverables are not
correctly referenced by the Adobe PDF Converter SDK.
To correct this problem, update the values specified for iccProfileDirList
and/or iccProfilesStandardFolders to include the ICC profiles provided in the
ICCProfiles directory included with the democonverter deliverables. For more
information on iccProfileDirList and iccProfileStandardFolders see
page 174.

10.6 Error message #8
If the Adobe PDF Converter SDK fails to initialize and returns error #8:
normIncorrectInterfaceVersion

then the value of the interfaceVersionNum being passed into the library is
incompatible with that in the library.
It is likely that you have not updated your header file and product code to use the
current version of the Adobe PDF Converter SDK.

10.7 Error Message Processing PostScript that Contains a
Screen Preview
Question. When processing a an EPS file that contains a screen (bitmap) preview, I
see the message:

%%[Error: undefined; OffendingCommand: ÅÐÓÆpÔ]%%

Why does this happen?

Frequently Asked Questions
Requirement for “iccprofiles” Folder

10

84 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Answer. Errors in the log file were found as a result of running through NormTester,
using test file Test_Set1\cs09_01.indd1_5.eps. The errors were not found
when running the same file through Distiller 5.0.
Here is the Log file after running the above file through the Adobe PDF Converter
SDK:

%%[Error: undefined; OffendingCommand: ÅÐÓÆpÔ]%%
%%[Flushing: rest of job (to end-of-file) will be ignored]%%

The first part of the EPS is a screen preview, followed by the intended image. Adobe
Photoshop® 7.0 produces such EPS segments. The first four bytes of the EPS file
contain 0xC6D3D0C5, which indicates the presence of the screen preview. The
intended image begins with the statement %!PS.
Acrobat Distiller has explicit code that filters out screen previews from the files it
processes. That is, Distiller bypasses the screen-preview portion of the EPS file, from
the beginning of the file to the statement just before %!PS.
The Acrobat Distiller screen-preview filtering code is not in the Distiller core. As a
result, the Adobe PDF Converter SDKthe Adobe PDF Converter SDK does not
provide the EPS screen-preview filter present in Acrobat Distiller.

NOTE: The Adobe PDF Converter SDK can successfully process PostScript
streams/files that contain embedded EPS segments that begin with screen
previews.

You can implement your own filter to strip out screen previews in EPS files. The
Adobe PDF Converter SDK reads such files without the help of the client software.

10.8 Requirement for “iccprofiles” Folder
Question. The Adobe PDF Converter SDK deliverables contain an “ICCProfiles"
folder. Are these folders required if the command-line to be passed to democonverter
is given as follows:

democonverterOS9 -efij +n -O <some dir>: -H
-B <jobOption> somejob.ps

The command-line options used above and in the answer are summarized below:

-e Turn off EPS sidelining off|

+n Use original PostScript file name in resulting PDF file name,
as in test.ps => test.pdf.

-O Set output directory to <dir>.

-H Add host fonts directory <dir>.

-B Send <file> as JobOptions before each job.

Using Adobe PDF Converter SDK 85

Frequently Asked Questions
Requirement for “iccprofiles” Folder

10

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Adobe PDF Converter SDK needs the ICC profiles. The Adobe PDF Converter SDK
cannot run without having access to ICC profiles. You can provide the Adobe PDF
Converter SDK with the ICC profile search locations using the -P option or using one
of the Color folders accessed by ACE.
The command line you provide above will work only if ICC profiles have been installed
by other Adobe applications (unless you've copied the contents of the ICC profiles
folder to one of the Color folders). Otherwise, use -r0 -P ICCProfiles\ (for Windows)
on the democonverter command line to use only the ICC profiles folder included in the
Adobe PDF Converter SDK deliverables.

-r0 Use only profiles in folders specified by the -P parameter.

-P Add ICC profile directory <dir>.

Using Adobe PDF Converter SDK 87
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

11 Restricting PostScript File
System Access

This chapter provides information on Adobe PDF Converter SDK’s security measures
for restricting the permissions of PostScript files when accessing the file system.
Using these measures, you can customize the level of accessibility to directories on
any machine running the Adobe PDF Converter SDK.

11.1 Specifying Directories for Restricted Access
The NSClientConfig struct includes two fields, fileSecurityDirList and
fileSecurityWorkingDir.
• fileSecurityWorkingDir — The full pathname of the PostScript interpreter's

current working directory during PostScript interpretation. The path may end with
the file system separator character but it is not required.

• fileSecurityDirList — The list of directories (full pathnames) for which the
PS interpreter will allow access for the PostScript "file" operators. The list is a
linked list of NORMSearchList elements terminated with a NULL next pointer.
Each "path" field in the fileSecurityDirList must end with the filesystem
separator character.

These fields specify a set of directories in the underlying file system (the %os%
storage device) for which the PostScript interpreter will allow access for the PostScript
"file" operators. When the fields contain valid directory locations, access is restricted
to the set of directories specified, and access to any other directories is denied. If both
fields are NULL, no access restrictions will be applied beyond what is enforced by the
underlying file system.

NOTE: See “File and Path Locations” on page 89 for information on using relative
pathnames in fileSecurityWorkingDir or fileSecurityDirList.

11.2 Access Strings
The "extension" field of each NORMSearchList element must be a pointer to a
string specifying the access allowed for the directory in the "path" field. The access
string must be one of the following:

rw Read-write for the directory.

ro Read-only for the directory.

Restricting PostScript File System Access
Access Strings

11

88 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

The trailing "+" (plus) sign applies the specified access restriction to the directory and
all its subdirectories, even if the subdirectories are created after this procedure
returns.
Without the trailing "+" (plus) sign, specified access is restricted to the directory itself.
Access to any subdirectory is denied. In this case you must list subdirectories
individually in the fileSecurityDirList field to include them in the access list.
This implies that subdirectories can have individual access restrictions that differ from
the parent directory. For example, consider the two files /dir1/file1 and
/dir1/dir2/file2. If only /dir1 is listed in fileSecurityDirList, access
to file1 may be granted, but access to file2 will be denied. To allow access to
both files fileSecurityDirList must include both /dir1 and /dir1/dir2.
Each directory in the list can be a subdirectory of any other directory in the list. This
allows for some quite sophisticated access control. Consider the following set of
security settings composed of directories and their associated access restrictions.

"ro" /dir1
"rw+" /dir1/dir2
"ro+" /dir1/dir2/dir3
"rw" /dir1/dir2/dir3/dir4
"rw+" /dir1/dir2/dir3/dir4/dir5

This set of security settings produces varying results depending on the location of the
file being accessed.

rw+ Read-write for the directory and all its subdirectories.

ro+ Read-only for the directory and all its subdirectories.

Accessing the file: With the access level: Results in:

/dir1/file rw Access denied

/dir1/file ro Access granted

/dir1/dir2/file rw Access granted

/dir1/dir2/file ro Access granted

/dir1/dir2/dir3/file rw Access denied

/dir1/dir2/dir3/file ro Access granted

/dir1/dir2/dir3/dir4/file rw Access granted

/dir1/dir2/dir3/dir4/file ro Access granted

/dir1/dir2/dir3/dir4/dir5/file rw Access granted

/dir1/dir2/dir3/dir4/dir5/file ro Access granted

Using Adobe PDF Converter SDK 89

Restricting PostScript File System Access
Processing the Security Settings

11

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

11.2.1 Adobe PDF Converter SDK Folder Security Settings
If you are using file access security measures, then you must set the correct
permissions for certain the Adobe PDF Converter SDK directories. The Adobe PDF
Converter SDK requires full read-write access to the following directories and their
subdirectories (rw+ permission):
• The current working directory.
• The Adobe PDF Converter SDK scratch directory.
• The output directory.
These settings must be implemented in order to use the file security capability.

11.3 Processing the Security Settings
When processing security settings, the Adobe PDF Converter SDK faces two distinct
cases.
• A PostScript language program attempts to access a file outside of the directories

specified in fileSecurityDirList. In this case, the PostScript interpreter
raises an UndefinedFileName exception.

• A PostScript language program attempts to access a file in one of the directories
specified in fileSecurityDirList. In this case, the PostScript interpreter
checks the requested file access against the allowed access for the directory. If
access is denied an InvalidFileAccess exception is raised. If access is allowed, to
access to the requested file is granted.

File and Path Locations
At the PostScript language level filenames can be specified either as fully qualified
pathnames or as relative pathnames. If a pathname is relative, the interpreter's
current working directory, specified in the fileSecurityWorkingDir field, is
prepended to the pathname before checking against the fileSecurityDirList
directories. As such, you can disallow relative pathnames by simply not listing the
interpreter's current working directory in fileSecurityDirList.

IMPORTANT: If you wish to use relative pathnames to access files from the
PostScript steam you MUST include the working directory of the Adobe
PDF Converter SDK in fileSecurityDirList.

Memory Allocation
You must allocate the storage for fileSecurityWorkingDir and
fileSecurityDirList. The storage is NOT copied, so the client must not free the
storage until the next call to this procedure.

Restricting PostScript File System Access
Example Security Settings

11

90 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Changing Access Restrictions During Processing
You can call PSRIPSetPostScriptFileAccessRestrictions() at any time to
change the file access restrictions.
To revert to the default (no access restrictions) call this procedure with both
fileSecurityWorkingDir and fileSecurityDirList set to NULL.
To disallow all access to all directories, call this procedure with
fileSecurityDirList set to NULL and fileSecurityWorkingDir set to any
non-NULL value.

11.4 Example Security Settings
An example of updating the Adobe PDF Converter SDK with enhanced security
settings is provided below. Note that in a true implementation, all paths should be
obtained dynamically and any allocated memory must be made available after it is
used.
In order to test the file system security, replace the two file security code segments
within democonverter.c:
demoConfig.fileSecurityWorkingDir = NULL;

demoConfig.fileSecurityDirList = NULL;

with the following code ...
demoConfig.fileSecurityWorkingDir =

"c:\\norm\\democonverter\\ix86win32\\Debug";

demoConfig.fileSecurityDirList =
(NORMSearchList)malloc(sizeof (NORMSearchListRec));

demoConfig.fileSecurityDirList->path =
"c:\\norm\\democonverter\\ix86win32\\Debug\\";
/* note trailing slashes */

demoConfig.fileSecurityDirList->extension = (char *) "ro+";

demoConfig.fileSecurityDirList->matchingOnly = FALSE;
/* ignored in this case */

demoConfig.fileSecurityDirList->next =
(NORMSearchList)malloc(sizeof (NORMSearchListRec));

demoConfig.fileSecurityDirList->next->path ="c:\\temp\\";
/* note trailing slashes */

Using Adobe PDF Converter SDK 91

Restricting PostScript File System Access
Example Security Settings

11

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

demoConfig.fileSecurityDirList->next->extension =
(char *) "rw+";

demoConfig.fileSecurityDirList->next->matchingOnly = FALSE;
/* ignored in this case */

demoConfig.fileSecurityDirList->next->next =
(NORMSearchList)malloc(sizeof (NORMSearchListRec));

demoConfig.fileSecurityDirList->next->next->path =
"c:\\norm\\democonverter\\ix86win32\\Debug\\HostFontCache
\\";
/* note trailing slashes */

demoConfig.fileSecurityDirList->next->next->extension =
(char *) "rw+";

demoConfig.fileSecurityDirList->next->next->matchingOnly =
FALSE;
/* ignored in this case */

demoConfig.fileSecurityDirList->next->next->next = NULL;

11.4.1 Example PostScript file to verify security settings
Once you update your security settings you should run a test PostScript file to verify
that the settings are working correctly. The PostScript code below illustrates a simple
test of the security settings specified above.
%!PS

(%os%/k/fred.txt)
(w) { file } stopped
{
 (Failed to Create file:) print
 pop print (\n) print flush
}
{
 dup (Test Text\n) writestring
 closefile
} ifelse

%%EOF

Using Adobe PDF Converter SDK 93

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Part II

Adobe PDF Converter SDK Reference
Part II describes the functions, callbacks, and structures of the Adobe PDF
Converter SDK. The chapters in Part II are:
• Chapter 13, “Functions and Callbacks”
• Chapter 14, “NSClientFile API”
• Chapter 15, “Conversion of Image Files to PDF”
• Chapter 16, “Conversion of PPML Files to PDF”
• Chapter 17, “Dynamic N Page PDF Generation”
• Chapter 18, “Structures and Enumerations”
Each chapter entry is presented alphabetically by function, callback, or structure
name.

Using Adobe PDF Converter SDK 95
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

13 Functions and Callbacks

APCAddImage()
NormalizerResult APCAddImage(char * imagePath, int pageWidth,
int pageHeight);

Description
Adds the specified image to the PDF document generated by APCCreateDoc(). This
API takes the full path name of the image file, the desired PDF page width and height,
on which the image is to be placed. If either the page width or the height is invalid, the
PDF page dimensions are set to image dimensions.

Parameters

Return Value
One of the NormalizerResult enumerators.

Header File
apcif.h

imagePath Specifies the full path name of the input Image file.

pageWidth Specifies the desired PDF page width.

pageHeight Specifies the desired PDF page height.

Functions and Callbacks13

96 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCConfigureImageJob()
void APCConfigureImageJob(ImageJobConfigP config);

Description
This function should be called before first call to APCAddImage() function. Call this
function to configure the image to pdf conversion.

Parameters
config pointer to the struct (of ImageJobConfig type) having settings required for the
configuration.

Return Value
None

Header File
apcif.h

Using Adobe PDF Converter SDK 97

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCConvertPPMLToPDF()
NormalizerResult APCConvertPPMLtoPDF(char *inputFileName, char
*outputFileName, NSServerDataPtr serverData, NSJobParams *
jobParams)

Description
Converts a PPML file to PDF. Input PPML file should be as per 2.1 specifications

Parameters

Return Value
Returns one of the NormalizerResult enumerators

Header File
apcif.h

inputFileName path to input PPML file

outputFileName path to output PDF file

serverData An opaque pointer to the Adobe PDF
Converter SDK’s private data

jobParams A pointer to the NSJobParams structure,
which specifies how the PostScript (coming
in PPML file) should be converted. The client
deallocates this structure on job completion
(when APCConvertPPMLtoPDF() returns).

Functions and Callbacks13

98 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCCreateDoc()
NormalizerResult APCCreateDoc(char * fullPDFFilePathName);

Description
Creates an empty PDF document. The client can add multiple image files of varying
formats to this document. Only one document can be created at a time. To create a
new document, save the existing one using the API, APCStartFile().

Parameters

Return Value
One of the NormalizerResult enumerators.

Header File
apcif.h

fullPDFFilePathName Specifies the full path name of the PDF file to
which the PDF stream of images needs to be
saved.

Using Adobe PDF Converter SDK 99

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCDisableOptimizationPStoPDF()
NormalizerResult APCDisableOptimizationPStoPDF (unsigned int
optimization);

Description
APCDisableOptimizationPStoPDF() function disables some specific optimizations
used during PS to PDF conversion depending on value of integer optimization
passed as an argument. By default all optimizations are enabled. The client needs to
call this API after APCInit() and before calling NormalizerServerRunJob().

Parameters

Return Value
One of the NormalizerResult enumerators. The specific optimization has been
disabled if the return value is normOK.

Header File
apcif.h

Optimization An integer value to disable specific
optimizations.

0 - No change, all optimizations are enabled
1 - Disable merging of Type42 fonts
2 - Disable optimization which checks
whether object is partially clipped or not
3 - Disable optimizations 1 and 2 above
4 - Disable clipping of objects outside of
PageSize
5 - Disable optimizations 1 and 4 above
6 - Disable optimizations 2 and 4 above
7 - Disable optimizations 1, 2 and 4 above

Functions and Callbacks13

100 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCDisableProcessingInPageSkip()
void APCDisableProcessingInPageSkip();

Description
This is new API which has been added in version 2.1. Call the
APCDisableProcessingInPageSkip function to disable the minimal processing of
some operators in the PageSkip mode. Note that now some operators like string
width might return incorrect values. This function should be called after APCInit() and
before calling NormalizerServerRunJob().

Parameters
None

Return Value
None

Header File
apcif.h

Using Adobe PDF Converter SDK 101

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCEnableDynamicGeneration()
NormalizerResult APCEnableDynamicGeneration(normBool
dynamicMode);

Description
The APCEnableDynamicGeneration() function enables or disables dynamic
generation of PDF files per job, depending on the value of dynamicMode.
dynamicMode is set to false, by default. The client needs to call this API after
APCInit() and before calling NormalizerServerRunJob().

Parameters

Return Value
One of the NormalizerResult enumerators. The client can submit additional requests
to Adobe PDF Converter SDK only if the return value is normOK.

Header File
apcif.h

dynamicMode A boolean value to set dynamic mode to
ON/OFF.

Functions and Callbacks13

102 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCEnableProcessingInPageSkip()
void APCEnableProcessingInPageSkip ();

Description
This is new API which has been added in version 2.1.
APCEnableProcessingInPageSkip() enables the processing of a set of ps
operators (show, stringwidth etc.) during PageSkip Mode for page which are to be
skipped. By default, it is disabled. This function should be called after APCInit()
and before calling NormalizeServerRunJob(). This API is useful only if the
PageSkip feature is enabled. Normally, Pageskip mode skip the processing of ps
operators (show, stringwidth etc.) in pages which are not converted and just
interpreted. But sometimes the postscript is dependent on this variable for further
processing which may result in some problem.
For example: let’s assume in postscript file, there is a loop in skipped page which is
dependent on value of stringwidth for deciding to break. If this stringwidth is not
processed this loop may go in infinite loop.
If APCEnableProcessingInPageSkip()is called, then most of the processing is
skipped and only the relevant processing is executed which returns the correct value.
Note: Enabling PageSkip disables processing of PostScript operators by default. So a
APCEnableProcessingInPageSkip() should follow APCEnablePageSkip()
if the processing is desired.

Parameters
None

Return Value
None

Header File
apcif.h

Using Adobe PDF Converter SDK 103

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCEndFile()
void (*APCEndFile)(NSClientDataPtr clientData);

Description
The APCEndFile() callback indicates that PDF Converter SDK has finished
processing a set of pages, regardless of whether distillation for the current page is
enabled or not and is only called if the Dynamic Mode is ON. The client needs to close
the PDF file it created for the pages.

Parameters

Return Value
N/A

Header File
apcif.h

clientData A pointer to the client’s private data.

Functions and Callbacks13

104 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCEndPage()
normBool(*APCEndPage)(NSClientDataPtr clientData,
SPDKeyValue *pageDevFeatureList, NSPageInfo *pageInfo);

Description
The APCEndPage() callback indicates that PDF Converter SDK has finished
processing a page, regardless of whether distillation is enabled. As part of this call,
PDF Converter SDK reports the page device keys that appear on the page as well as
the plate color information and page label information, from the PostScript and DSC
comments on the page. In short, this call back is a replacement for NSEndPage() call
back and needs to be implemented in case the client wants to use the dynamic
feature of PDF Converter SDK. This call back is only called by the Converter when
dynamic Mode is enabled for the job. If the dynamic mode is off, NSEndPage() is
called. If dynamicMode is set to TRUE and distillation is enabled, the client needs to
notify the PDF Converter SDK about whether or not it wants the PDF file up to the
current page.

Parameters

Return Value
The boolean value, true, notifies the Converter SDK to create a PDF file up to the
current page. The value, false, indicates that the client does not want the PDF file
created yet.

Header File
apcif.h

clientData A pointer to the client’s private data.

pageDevFeatureList A pointer to the SPDKeyValue structure used
to represent key-value pairs internally.

pageInfo A pointer to the NSPageInfo structure that
contains information about a page.

Using Adobe PDF Converter SDK 105

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCInit()
NormalizerResult APCInit(APCClientConfig *config,
NSServerDataPtr *pServerData);

Description
The APCInit() function initializes the interface between the client and the Adobe
PDF Converter SDK. This API does the job of NormalizerServerInit() and also
initializes the dynamic feature related call backs. The client needs to initialize with
APCInit() instead of NormalizerServerInit() to use the dynamic feature.

Parameters

Return Value
One of the NormalizerResult enumerators. The client can submit additional requests
to Adobe PDF Converter SDK only if the return value is normOK.

Header File
apcif.h

config A pointer to the APCClientConfig Structure,
which contains callbacks and other
parameters used during all subsequent calls.
The client deallocates this structure after
shutting down Adobe PDF Converter SDK.

pServerData The location at which Adobe PDF Converter
stores a pointer to its opaque private data.

Functions and Callbacks13

106 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCPageSkipDisable()
void APCPageSkipDisable();

Description
This is new API which has been added in version 2.1.The product should call
APCPageSkipDisable() to disable the PageSkip feature. This function should be
called after APCInit() and before calling NormalizerServerRunJob().

Parameters
None

Return Value
None

Header File
apcif.h

Using Adobe PDF Converter SDK 107

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCPageSkipEnable()
void APCPageSkipEnable();

Description
This is new API which has been added in version 2.1. The product should call
APCPageSkipEnable() to enable the PageSkip feature. This function should be
called after APCInit() and before calling NormalizeServerRunJob(). In PageSkip
mode, only those pages that are requested to print by callback
NSGetNextDeviceActivatePageNumber () are converted. All other pages are just
interpreted. The NSTotalNumberofPages () callback is called to inform the product
the total number of pages in a job, after APC finishes processing of the job.

Parameters
None

Return Value
None

Header File
apcif.h

Functions and Callbacks13

108 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCSaveDoc()
NormalizerResult APCSaveDoc(void);

Description
This API closes the document stream and saves the PDF file that was generated
by APCCreateDoc().

Parameters
N/A

Return Value
One of the NormalizerResult enumerators.

Header File
apcif.h

Using Adobe PDF Converter SDK 109

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCSetPDFX4Setting()
void APCSetPDFX4Setting (PDFX4Setting setting);

Description
This is new API which has been added in APC SDK 3.2. The product should call this
API to change the behavior of APC as described by parameters below. This API
should be called after APCInit() and before calling NormalizerServerRunJob().

Parameters

Return Value
None

Header File
apcif.h

PDFX4Setti
ng

PDF/X-4 setting structure.

Functions and Callbacks13

110 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

APCStartFile()
void (*APCStartFile)(NSClientDataPtr clientData,
NSFileDataPtr *pFileData);

Description
The APCStartFile() callback informs the client that PDF Converter SDK is ready
to begin transferring a PDF stream for a set of pages. Adobe PDF Converter SDK
calls APCStartFile() only if dynamicMode is ON. In the function invoked by the
APCStartFile() callback, the client should open a file to store the PDF pages
stream, produced by Adobe PDF Converter SDK.

Parameters

Return Value
An integer that indicates the client’s success at creating the requested file. The value,
0, indicates success. A non-zero value indicates an error such as file access
problems. A non-zero value typically causes the current job to fail with an I/O error
and causes NormalizerServerRunJob() to return the normPostScriptError
enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

pFileData A pointer to the location at which the client stores a pointer
to a new instance of file data.

Using Adobe PDF Converter SDK 111

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerAddDiskStorageDevice()
NormalizerResult NormalizerAddDiskStorageDevice (int n,
char *prefix, int priority);

Description
The NormalizerAddDiskStorageDevice() function defines an additional
PostScript language storage device, mapping it to a specific directory that is
accessible to the Adobe PDF Converter SDK.
NormalizerAddDiskStorageDevice() must be called before
NormalizerServerInit() (or APCInit() when dynamicmode is ON).

The storage device can be used for file operations and resource access within the
PostScript language. See Section 3.8.2 of the PostScript Language Reference, Third
Edition, for more information on storage devices.

Parameters

Return Value
One of the NormalizerResult enumerators.

Header File
apcif.h

n The number of the device. In the PostScript language, this
number will be part of the device's name, %diskn%. Legal
values for n are integers from 1 to 99. The value of 0 is
already reserved because %disk0% represents the
current working directory of the Adobe PDF Converter
SDK.

prefix The directory name (including a trailing /) to which the
device will be mapped. The syntax for prefix is the same
as that used for the path member of a
NORMSearchList structure.

priority The priority with which the device will be searched during
file operations. Legal values for priority range from 0 to 99.
A value of 0 has the highest priority, and a value of 99 has
the lowest. Setting priority to -1 sets the storage
device's priority to the default value 2.

Functions and Callbacks13

112 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerDisableDistilling()
NormalizerResult
NormalizerDisableDistilling(NSServerDataPtr serverData);

Description
The NormalizerDisableDistilling() function turns off the production of PDF
output for a job, but allows the Adobe PDF Converter SDK to continue interpreting the
job.
When distillation is disabled, the Adobe PDF Converter SDK stops adding PDF page
objects to the full-document PDF file and stops producing streams for external files. If
filePerPage is set to TRUE in the NSJobParams structure, the Adobe PDF
Converter SDK also stops producing PDF page streams. When dynamic mode is ON,
the pages for which the distillation is diasbled are not added to the dynamic file.
There are two purposes for disabling and enabling distillation:
• Parallel conversion — To support parallel conversion (distillation) where, for

example, multiple instances of the Adobe PDF Converter SDK are setup to
process interleaved pages of the same PostScript stream/file.

• Selective conversion — To produce a full-document PDF file that is missing some
of the pages present in the PostScript stream/file

While distillation is disabled, the Adobe PDF Converter SDK continues invoking the
NSEndPage() callback at the end of each page; however, it stops invoking the other
data transfer callbacks, including NSStartPage().
When dynamic mode is ON, the Adobe PDF Converter SDK continues invoking the
APCEndPage() callback at the end of each page; however, it stops invoking the other
data transfer callbacks.
This function should only be called either before running a job or during an
NSEndPage() (APCEndPage() when dynamic mode is ON) callback. Calling it at
other times will produce unpredictable results.

Parameters

Return Value
One of the NormalizerResult enumerators.

Header File
apcif.h

serverData An opaque pointer to the Adobe PDF Converter SDK’s
private data.

Using Adobe PDF Converter SDK 113

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Availability
All Adobe PDF Converter SDK versions.

Functions and Callbacks13

114 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerEnableDistilling()
NormalizerResult
NormalizerEnableDistilling(NSServerDataPtr serverData);

Description
The NormalizerEnableDistilling() function turns on the production of PDF
output for a job, following a previous call to NormalizerDisableDistilling().
This function should only be called either before running a job or during an
NSEndPage() (APCEndPage() when dynamic mode is ON) callback. Calling it at
other times will produce unpredictable results.

Parameters

Return Value
One of the NormalizerResult enumerators.

Header File
apcif.h

Availability
All the Adobe PDF Converter SDK versions.

serverData An opaque pointer to the Adobe PDF Converter SDK’s
private data.

Using Adobe PDF Converter SDK 115

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerNewHostFontList()
NormalizerResult NormalizerNewHostFontList(NSServerDataPtr
serverData, NORMSearchList hostfontSearchList, normBool reset,
normBool ignoreStdTTFonts);

Description
The NormalizerNewHostFontList() function modifies the directories
containing host fonts that the Adobe PDF Converter SDK uses when searching for
host font programs. This function replaces the deprecated function
NormalizerNewResourceList(), which could not be called while a job was
running.

NOTE: If more than one instance of the Adobe PDF Converter SDK is running on a
machine, and all the instances are sharing a host font cache, then the
hostfontSearchList for each Adobe PDF Converter SDK instance must
be identical. In addition, NormalizerNewHostFontList() must not be
used to change the hostfontSearchList values.

Functions and Callbacks13

116 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Parameters

Return Value
One of the NormalizerResult enumerators.

serverData An opaque pointer to the Adobe PDF Converter
SDK’s private data.

hostfontSearchList A linked list of directory names that the Adobe PDF
Converter SDK uses when searching for files
containing host fonts. This linked list is initialized in
the NSClientConfig structure
(hostfontSearchList entry). It should contain
ALL font directories.
The client deallocates searchList when this
function returns.
NOTE: Each pathname in the referenced search list
must be encoded using standard characters and must
contain a platform-specific separator, such as “/” or
“\”.

reset If TRUE, the hostfont cache is reset; otherwise, it is
not.

ignoreStdTTFonts If TRUE, the Adobe PDF Converter SDK ignores the
TrueType versions of certain standard PostScript
fonts. This parameter can also be specified in the
ignoreStdTTFonts field of the NSClientConfig
struct.

Using Adobe PDF Converter SDK 117

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerServerInit()
NormalizerResult NormalizerServerInit(NSClientConfig *config,
NSServerDataPtr *pServerData);

Description
The NormalizerServerInit() function initializes the interface between the
client and Adobe PDF Converter SDK.

Parameters

Return Value
One of the NormalizerResult enumerators. The client can submit additional
requests to the Adobe PDF Converter SDK only if the return value is normOK.

Header File
apcif.h

config A pointer to the NSClientConfig structure, which
contains callbacks and other parameters used during all
subsequent calls. The client deallocates this structure after
shutting down the Adobe PDF Converter SDK.

pServerData The location at which the Adobe PDF Converter SDK
stores a pointer to its opaque private data.

Functions and Callbacks13

118 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerServerRunJob()
NormalizerResult
NormalizerServerRunJob(NSServerDataPtr serverData,
NSJobParams *jobParams);

Description
The client calls the NormalizerServerRunJob() function to begin converting a
PostScript stream into PDF expressions. After the client calls this function, the Adobe
PDF Converter SDK may use client callbacks to obtain PostScript streams, to write
out data to files, or to report information about the PostScript content being
processed.

NOTE: NormalizerServerRunJob() does not re-enable the distillation process if
it was disabled during a previous job. To avoid running a job with distillation
erroneously disableld, the client should call
NormalizerEnableDistilling() just before calling
NormalizerServerRunJob().

Parameters

Return Value
Returns one of the NormalizerResult enumerators.
If this function returns with an unsuccessful enumerator result, the Adobe PDF
Converter SDK does the following:
• Closes and deletes the partially-built full-document PDF file, if the Adobe PDF

Converter SDK is performing file I/O (the NSClientFile API is not being used).
If NormalizerServerRunJob() returns with an error, the client should close and
delete any open page files or external files.

Header File
apcif.h

serverData An opaque pointer to the Adobe PDF Converter SDK’s
private data.

jobParams A pointer to the NSJobParams structure, which specifies
how the PostScript file should be converted. The client
deallocates this structure on job completion (when
NormalizerServerRunJob() returns).

Using Adobe PDF Converter SDK 119

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerServerShutdown()
NormalizerResult
NormalizerServerShutdown(NSServerDataPtr serverData);

Description
The NormalizerServerShutdown() function terminates the Adobe PDF
Converter SDK.

Parameters

Return Value
Returns one of the NormalizerResult enumerators

Header File
apcif.h

serverData An opaque pointer to the Adobe PDF Converter SDK’s
private data.

Functions and Callbacks13

120 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerSetDisk0Prefix()
NormalizerResult NormalizerSetDisk0Prefix(char *prefix);

Description
The NormalizerSetDisk0Prefix() function specifies the location of a string
with a trailing slash (/) to which the %disk0% storage device will be mapped.
By default, %disk0% maps to the current working directory, which might be dynamic.
NormalizerSetDisk0Prefix() can be used to specify an absolute path such as
/volume/directory/NSproduct/, in which case the location of %disk0% is
independent of the current working directory.

Parameters

Return Value
Returns one of the NormalizerResult enumerators

Header File
apcif.h

prefix A pointer to a string whose syntax is the same as that used
by the path member of a NORMSearchList structure.

Using Adobe PDF Converter SDK 121

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSBackChanMsg()
void (*NSBackChanMsg)(NSClientDataPtr clientData, char *buf);

Description
The NSBackChanMsg() callback implements the PostScript Interpreter’s standard
output device. It sends errors to the client that cause a job to be terminated. Errors
are reported in strings that begin with %%[Error.
After calling the NSBackChanMsg() callback to report an error that causes a job to
be terminated, the NormalizerServerRunJob() function returns one of the
NormalizerResult enumerators. NSBackChanMsg() does not return any
results.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data.

buf A pointer to a character string that contains an error
message. The Adobe PDF Converter SDK deallocates this
structure after NSBackChanMsg() returns.

Functions and Callbacks13

122 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSBufferGetPS()
int (*NSBufferGetPS)(NSClientDataPtr clientData, char **pBuf,
unsigned int *pLength, normBool usePrologue);

Description
The NSBufferGetPS() callback requests additional input PostScript data.
The client should not reuse or free a buffer provided in the NSBufferGetPS()
callback until the Adobe PDF Converter SDK makes a new call to
NSBufferGetPS() or as the job finishes.
See also Section 7.1.1, “How the Adobe PDF Converter SDK Uses Data Transfer
Callbacks.

Parameters

Return Value
Indicates the client’s success at obtaining the next buffer of PostScript stream. A
value of 0 indicates success. An error will cause the job to terminate. An end-of-file
condition should not be considered an error.

Header File
apcif.h

clientData A pointer to the client’s private data.

pBuf In the location specified by pBuf, the client stores a
pointer to a buffer of PostScript stream.
The client deallocates this buffer at the next call to
NSBufferGetPS() or when the job finishes (when
NormalizerServerRunJob() returns).

pLength In this location, the client stores the number of bytes in the
PostScript buffer that contain information. The client sets
pLength to 0 when it has no more PostScript stream
remaining in the job.

usePrologue The value of the UsePrologue Distiller parameter. If TRUE,
you may choose to add a prologue.ps and/or an
epilogue.ps to the PostScript stream.

Using Adobe PDF Converter SDK 123

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSBufferHandOff()
int (*NSBufferHandOff)(NSClientDataPtr clientData,
NSFileDataPtr fileData, char *buf, int length);

Description
The NSBufferHandOff() callback writes output data to a PDF file or external
stream file. The Adobe PDF Converter SDK calls NSBufferHandOff() multiple
times to send the client either PDF streams for individual pages or data to be stored in
external files. The Adobe PDF Converter SDK invokes NSBufferHandOff if
distillation is enabled and if:
• filePerPage is TRUE and Adobe PDF Converter SDK finishes interpreting a

page.
• sidelineEPS is TRUE and Adobe PDF Converter SDK encounters an embedded

EPS segment.
• sidelineImages is TRUE and Adobe PDF Converter SDK detects an

embedded image.
See also Section 7.1.1, “How the Adobe PDF Converter SDK Uses Data Transfer
Callbacks.

Parameters

Return Value
An integer value of 0 indicates success. A nonzero value indicates an error, such as
an out-of-memory or file access problem. A nonzero value typically causes the current
job to fail with an ioerror and causes NormalizerServerRunJob() to return with
the normPostScriptError enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

fileData A pointer to the client’s file handle returned by
NSCreateExternalFile().

buf A pointer to the buffer that the client should write to the file
specified in fileData.
The client is not responsible for deallocating this buffer.

length The number of bytes in buf.

Functions and Callbacks13

124 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSCantHappenProc()
typedef void (*NSCantHappenProc) (unsigned long errID);

Description
The NSCantHappenProc() callback is called under fatal error conditions. If you
don't want to use this callback, it must be NULL.

Parameters

Return Value
No value is returned.

Header File
apcif.h

This callback tells the client a fatal error has terminated execution.

errID Identifies the kind of fatal error condition.

Using Adobe PDF Converter SDK 125

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSCloseExternalFile()
void (*NSCloseExternalFile)(NSClientDataPtr clientData,
NSFileDataPtr fileData);

Description
The NSCloseExternalFile() callback indicates to the client that it may close the
file. Adobe PDF Converter SDK calls this callback function when it has finished writing
to an external file. The client should free the NSFileDataPtr handle used in the
NSCreateExternalFile() callback.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data.

fileData A pointer to the client’s file handle returned by
NSCreateExternalFile().

Functions and Callbacks13

126 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSCreateExternalFile()
int (*NSCreateExternalFile)(NSClientDataPtr clientData,
NormalizerSidelineType sidelineType, NSFileDataPtr *pFileData,
char *nameBuf, int maxNameLength);

Description
The NSCreateExternalFile()callback creates an external file. External files are
used to store sidelined images and EPS files. The client must create the file and
return a NSFileDataPtr handle to it. It must also provide a name for the file. The
name will be written into the individual page PDF file. Normally the external stream file
should be placed in the same directory as the PDF files and the filename should be a
relative path.You must ensure that the filename provided will allow a RIP to open the
file using os_fopen().
The string placed in nameBuf may either be a null-terminated ASCII string or a
UNICODE string. A UNICODE string must be terminated with two NULL bytes and
must quote bytes that correspond to path separator characters, as described in
section 7.3.1 of the PDF Language Specification, Version 1.3.

Using Adobe PDF Converter SDK 127

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Parameters

Return Value
An integer that indicates the client’s success at creating the requested file. A value of
0 indicates success. A nonzero value indicates an error, such as file access problems.
A nonzero value typically causes the current job to fail with an ioerror and causes
NormalizerServerRunJob() to return with the normPostScriptError
enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

sidelineType An enumerated value of type
NormalizerSidelineType that describes the type of
data that Adobe PDF Converter SDK will store in the
client-created file. Possible values are:
• normSidelineImage - Image data
• normSidelineEPS - EPS data

pFileData A pointer to the location where the client stores a pointer to
a new instance of file data.

nameBuf A pointer to a character string in which the client stores the
pathname of the external file. That name must be of type
FILESPECIFICATION, as described in Section 7.3.1 of the
PDF Language Specification, Version 1.3.
NOTE: Adobe PDF Converter SDK uses the name
referenced by nameBuf to create external references in
the PDF content it subsequently produces.The referenced
character string may be encoded using either the standard
character format or the UNICODE one.

maxNameLength The maximum number of characters permitted in the name
not including the NULL terminator.

Functions and Callbacks13

128 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSDupFontNotifyProc()
void (*NSDupFontNotifyProc) (PNSHostFontListData entry1,
PNSHostFontListData entry2);

Description
The NSDupFontNotifyProc() callback provides information to the client on
duplicate fonts found at startup. The information provided is read-only and cannot be
changed.

NOTE: This callback must be NULL if it is not used.

Parameters

Return Value
None.

Header File
apcif.h

entry1 A pointer to a NSHostFontListData structure.

entry2 A pointer to a NSHostFontListData structure
describing the same host fonts as those located at
entry1.

Using Adobe PDF Converter SDK 129

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSEndPage()
void (*NSEndPage)(NSClientDataPtr clientData,
SPDKeyValue *pageDevFeatureList, NSPageInfo *pageInfo);

Description
The NSEndPage() callback indicates that Adobe PDF Converter SDK has finished
processing a page, regardless of whether distillation is enabled or filePerPage is
set to TRUE. As part of this call, Adobe PDF Converter SDK reports the page device
keys appearing on the page, as well as plate color information and page label
information from PostScript and DSC comments on the page.
If filePerPage is set to TRUE and distillation is enabled, the client should close
the PDF page file it created for the page.
See also Section 7.1.1, “How the Adobe PDF Converter SDK Uses Data Transfer
Callbacks.

Functions and Callbacks13

130 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data.

pageDevFeatureList A pointer to a linked list of key-value pairs representing
page device keys that have appeared in the job since
the previous page. The type declaration for the nodes in
this list appears after this table.
Using this argument, Adobe PDF Converter SDK
reports only those page device keys that have changed
in the PostScript expressions since the last page in the
job and that are listed in *setpagedeviceKeysList.
See the NSClientConfig structure. Adobe PDF
Converter SDK returns NULL if there are no page
device keys to report.
NOTE: A job may contain several concatenated
PostScript files or streams.
Adobe PDF Converter SDK deallocates this list after the
callback returns.

pageInfo An NSPageInfo structure that provides plate color
and page label information about a page. The structure
contains pointers to the following character strings:
• plateColor, if non-NULL, references the name of

the plate color declared by the PostScript job in an
%%PlateColor: PostScript comment.

• pageLabel, if non-NULL, references the page label
specified by the PostScript job in a %%Page:
comment

Adobe PDF Converter SDK deallocates this structure
after the callback returns.

Using Adobe PDF Converter SDK 131

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSErrorMsg()
void (*NSErrorMsg)(NSClientDataPtr clientData, char * buf);

Description
The NSErrorMsg() callback sends fatal error messages from Adobe PDF
Converter SDK to the client.

Parameters

Return Value
NormalizerServerRunJob() returns one of the NormalizerResult
enumerators.

Header File
apcif.h

clientData A pointer to the client’s private data.

buf A pointer to the error message.
Adobe PDF Converter SDK deallocates this structure after
NSErrorMsg() returns.

Functions and Callbacks13

132 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSExitProcessProc()
void (*NSExitProcessProc)(void);

Description
The NSExitProcessProc callback is called under fatal error conditions. If you don't
want to use this callback, it must be NULL.

Parameters
None.

Return Value
Do not return from this callback; exit instead.

Header File
apcif.h

Using Adobe PDF Converter SDK 133

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSExternalCommandProc()
unsigned int (*NSExternalCommandProc)
(NSClientDataPtr clientData, char *command,
long int commandLength, char *response, long int
*responseLength);

Description
The NSExternalCommandProc() callback allows interaction between the
PostScript program and your client software. Adobe PDF Converter SDK invokes the
NSExternalCommand() callback when a PostScript language program executes
the key-word pair externalcommand. The combination of externalcommand in a
PostScript program and an NSExternalCommand() implementation allows the
PostScript program to communicate directly with Adobe PDF Converter SDK. See
also Section 7.4, “Callback for Responding to the externalcomm and PostScript
Operator.
If the callback is set to NULL in the NSClientConfig structure, an internal callback
is used, which does nothing.

Parameters

Return Value
A zero or non-zero integer. A zero result pushes FALSE onto the operand stack after
the response string. A non-zero result pushes TRUE onto the PostScript operand
stack. The significance of the result your client supplies reflects the result of the query
posed by the command string.

clientData A pointer to the client’s private data.

command A pointer to the command (text) string containing the
PostScript command that will pushed onto the operand
stack.

commandLength A pointer to the length in bytes of the PostScript command
(text) string.

response A pointer to a text string containing Adobe PDF Converter
SDK’s response to the command.

responseLength A pointer to the length in bytes of the response text string.

Functions and Callbacks13

134 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSExternalProcessCommentCleanupProc() Windows only.
void (*NSExternalProcessCommentCleanupProc)
(NSClientDataPtr clientData);

Description
This function deallocates resources used by
NSExternalProcessCommentProc(). This function is called just after
NSExternalProcessCommentProc() executes, and is also called if a PostScript
error occurs during execution of NSPSExecuteStringProc().
For more information on this callback, see “Callbacks for Modifying DSC and
PostScript” on page 64.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data. If the value of
clientData is NULL, then this function is called but
does not perform any operation.

Using Adobe PDF Converter SDK 135

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSExternalProcessCommentProc() Windows only.
void (*NSExternalProcessCommentProc)
(NSClientDataPtr clientData, char * line, unsigned int
*skipPS, NSPSExecuteStringProc() executeStringProc);

Description
This function provides enhanced control over the parsing of a given DSC comment by
allowing you to specify skip lines of PostScript or execute arbitrary PostScript if
desired. This function is called just after
NSExternalProcessCommentSetupProc() executes, and is always followed by
NSExternalProcessCommentCleanupProc().
For more information on this callback, see “Callbacks for Modifying DSC and
PostScript” on page 64.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data.

line A DSC comment string passed from Adobe PDF
Converter SDK.

skipPS An integer value which is used to return a value to
Adobe PDF Converter SDK. When set to a non-zero
value, this argument causes Adobe PDF Converter
SDK to skip executing lines of PostScript until the next
DSC comment is read.

executeStringProc A pointer to NSPSExecuteStringProc() which
allows you to execute arbitrary PostScript.

Functions and Callbacks13

136 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSExternalProcessCommentSetupProc() Windows only.
void (*NSExternalProcessCommentSetupProc)
(NSClientDataPtr clientData);

Description
This function sets up necessary resources needed to execute
NSExternalProcessCommentProc(). This function is called just before
NSExternalProcessCommentProc() executes.
For more information on this callback, see “Callbacks for Modifying DSC and
PostScript” on page 64.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data. If the value of
clientData is NULL, then this function is called but
does not perform any operation.

Using Adobe PDF Converter SDK 137

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSFreeMemoryProc()
typedef void(*NSFreeMemoryProc) (NSClientDataPtr clientData,
void *freeThis, NSMemoryFreeInfoPtr memInfoPtr);

Description
The NSFreeMemoryProc() callback allows you control to free VM memory. It is
only used if NSMoreMemoryProc() also is implemented.

NOTE: If this callback is not used, it must be set to NULL in NSClientConfig.

Parameters

Return Value
None.

Header File
apcif.h

clientData ClientData pointer set by the product.

freeThis A pointer to the memory to free.

memInfoPtr Information regarding the memory freeing.

Functions and Callbacks13

138 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSGetHostFontMutexProc() Windows only.
void * (*NSGetHostFontMutexProc)(void);

Description
The NSGetHostFontMutexProc() callback either creates or acquires a machine
global mutex as required. The callback then returns a handle to the mutex.
This function is used when multiple Adobe PDF Converter SDK processes are
sharing the same host font file, as in the case of parallel conversion. For a description
of parallel conversion, and more information on NSGetHostFontMutexProc(),
see “Parallel Conversion” on page 26.

Parameters
None.

Return Value
Returns a pointer to a handle.

Header File
apcif.h

Using Adobe PDF Converter SDK 139

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSGetNextDeviceActivatePageNumber()
typedef void(*NSGetNextDeviceActivatePageNumber)
(NSClientDataPtr clientData, int *pageno)

Description
This is new callback which has been added in version 2.1.
The NSGetNextDeviceActivatePageNumber() callback is called when a job
starts. It allows the product to provide page number of job APC should convert to
postscript. The page which is specified by product would be rendered by APC. After
done with the processing of specified page, this callback is called to get next page
number to be converted. This way product can specify the page number which it
wants to be converted through this callback, only those pages of job will be converted
to postscript rest of the pages will be just skipped without converting.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data.

pageno Page number which should be converted by APC to
postscript.

Functions and Callbacks13

140 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSMoreMemoryProc()
typedef char * (*NSMoreMemoryProc) (NSClientDataPtr
clientData,long int * nBytes, NSMemoryAllocInfoPtr
memInfoPtr);

Description
The NSMoreMemoryProc() callback allows you to control the allocation of VM
memory. If NSMoreMemoryProc() is implemented, NSFreeMemoryProc() must
also be implemented. Use this callback to control or monitor the allocation of memory.

NOTE: If this callback is not used, it must be set to NULL in NSClientConfig.

Parameters

Return Value
None.

Header File
apcif.h

clientData ClientData pointer set by the product.

nBytes Number of bytes to be alocated.

memInfoPtr Information regarding the memory freeing.

Using Adobe PDF Converter SDK 141

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSProcessComment()
int (*NSProcessComment)(NSClientDataPtr clientData,
char *comment, char **newText);

Description
The NSProcessComment() callback parses each enclosed comment in a PostScript
job. For processing PostScript jobs that claim compliance with DSC 2.0 or 3.0, Adobe
PDF Converter SDK calls NSProcessComment() before parsing:
• Each enclosed comment that begins with a percent sign (%) followed by a

non-blank character
• Each subsequent line that begins with a percent sign.
The client may simply read the comment for information purposes or use it to modify
the job by substituting a new block of PostScript for the comment.
Adobe PDF Converter SDK does not report comments for external fonts referenced
from the PostScript stream.

Parameters

Return Value
An integer value of zero indicates Adobe PDF Converter SDK should continue
processing the PostScript comment. A nonzero integer value indicates Adobe PDF
Converter SDK should process the text referenced by newText, rather than the
comments referenced by comment.

Header File
apcif.h

clientData A pointer to the client’s private data.

comment A pointer to the comment text string. The pointer
references a location in the buffer previously supplied by
the client in the NSBufferGetPS() callback.

newText If the client wants to replace the comment with a new block
of PostScript, newText is a pointer to the location where
the new block is placed.

Functions and Callbacks13

142 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSProgress()
int (*NSProgress)(NSClientDataPtr clientData);

Description
The NSProgress() callback is called every time the PostScript Interpreter
processes the number of PostScript operations indicated in the progressQuantum
field of the NSClientConfig structure.

Parameters

Return Value
None.

Header File
apcif.h

clientData A pointer to the client’s private data.

Using Adobe PDF Converter SDK 143

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSPSExecuteStringProc() Windows only.
void (*NSPSExecuteStringProc)(char *buf);

Description
This function is provided by Adobe PDF Converter SDK for use in conjunction with
NSExternalProcessCommentProc(). NSPSExecuteStringProc is called from
NSExternalProcessCommentProc() as a way to pass arbitrary PostScript into
the stream.

IMPORTANT: The PostScript you supply through NSPSExecuteStringProc must
not modify the PostScript graphic state.

Parameters

Return Value
None.

Header File
apcif.h

buf A pointer to valid PostScript. The PostScript is executed
immediately. You may release the buffer when
NSPSExecuteStringProc() returns.

Functions and Callbacks13

144 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSReleaseHostFontMutexProc() Windows only.
void (*NSReleaseHostFontMutexProc)(void *)

Description
The NSReleaseHostFontMutexProc() callback releases the mutex that is
created acquired by the NSGetHostFontMutexProc() callback.
This function is used when multiple Adobe PDF Converter SDK processes are
sharing the same host font file, as in the case of Parallel Conversion. For a
description of parallel conversion, and more information on
NSReleaseHostFontMutexProc(), see “Parallel Conversion” on page 26.

Parameters
Takes in the mutex handle (cast as a void) used by NSGetHostFontMutexProc().

Return Value
None.

Header File
apcif.h

Using Adobe PDF Converter SDK 145

Functions and Callbacks 13

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSStartPage()
int (*NSStartPage)(NSClientDataPtr clientData,
NSFileDataPtr *pFileData);

Description
The NSStartPage() callback informs the client that Adobe PDF Converter SDK is
ready to begin transferring a PDF stream for a page. Adobe PDF Converter SDK calls
NSStartPage() only if filePerPage is TRUE and distillation is enabled.
In the function invoked by the NSStartPage() callback, the client should open a
file in which to store the PDF page stream produced by Adobe PDF Converter SDK.

Parameters

Return Value
An integer that indicates the client’s success at creating the requested file. A value of
0 indicates success. A nonzero value indicates an error, such as file access problems.
A nonzero value typically causes the current job to fail with an ioerror and causes
NormalizerServerRunJob() to return with the normPostScriptError
enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

pFileData A pointer to the location at which the client stores a pointer
to a new instance of file data.

Functions and Callbacks13

146 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSTotalNumberofPages()
typedef void(*NSTotalNumberofPages) (NSClientDataPtr
clientData, int TotalPageCount)

Description
This is the new callback which has been added in version 2.1.
The NSTotalNumberofPages() callback is called at the end of the job with total
number of pages in job.

Parameters

Return Value
None

Header File
apcif.h

clientData A pointer to the client’s private data.

TotalPage
Count

Total numbers of pages in job.

Using Adobe PDF Converter SDK 147
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

14 NSClientFile API

NSBufsizeProc()
int (*NSBufsizeProc)(NSClientDataPtr clientData,
NSClientFileID fd, int *result);

Description
The NSBufsizeProc() callback queries the client on the buffer size the Adobe
PDF Converter SDK should use for reads and writes. This callback will be used once
each job, before any read or write operations are performed.

Parameters

Return Value
The client returns a value that indicates the success or failure of the function. The
value 0 indicates success; the value -1 indicates failure. (The error return is provided
for consistency; there is no reason the NSBufsizProc() callback would ever make
an error return.)

Header File
apcif.h

clientData A pointer to the client’s private data.

fd Client file ID, which is the client’s file identifier.

result The optimal buffer size for the file. Can be set to zero if the
client has no preference about the buffer size.

NSClientFile API14

148 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSCloseProc()
int (*NSCloseProc)(NSClientDataPtr clientData,
NSClientFileID fd);

Description
The NSCloseProc() callback notifies the client to close the file associated with
fd, and instructs the Adobe PDF Converter SDK to make no further callbacks using
fd.

Parameters

Return Value
The client returns a value that indicates the success or failure of the function. The
value 0 indicates success; the value -1 indicates failure. A failure return typically
causes the current job to fail with an ioerror and causes the
NormalizerServerRunJob() function to return with the
normPostScriptError enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

fd Client file ID, which is the client’s file identifier.

Using Adobe PDF Converter SDK 149

NSClientFile API 14

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSReadProc()
int (*NSReadProc)(NSClientDataPtr clientData,
NSClientFileID fd, char *buf, unsigned int count);

Description
The NSReadProc() callback requests the client to read data from the client file
specified by fd.

Parameters

Return Value
The client returns a value that indicates the success or failure of the callback. A non-
negative value indicates the number of bytes the client successfully read. A value of
-1 indicates failure. A failure return typically causes the current job to fail with an
ioerror and typically causes the NormalizerServerRunJob() function to return
with the normPostScriptError enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

fd Client file ID, which is the client’s file identifier.

buf A pointer to an area where the data read from the file
should be stored. Adobe PDF Converter SDK is
responsible for allocating and freeing this memory.

count The number of bytes that the client should read into buf.

NSClientFile API14

150 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSSeekProc()
int (*NSSeekProc)(NSClientDataPtr clientData,
NSClientFileID fd, long where, int seekMethod);

Description
The NSSeekProc() callback requests the client to reposition the file pointer for fd.

Parameters

Return Value
The client returns a value that indicates the success or failure of the callback. A
non-negative value indicates the number of bytes the client successfully read. A value
of -1 indicates failure. A failure return typically causes the current job to fail with an
ioerror and typically causes the NormalizerServerRunJob() function to return
with the normPostScriptError enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

fd Client file ID, which is the client’s file identifier.

where Together with seekMethod, determines how the file
pointer should be changed.

seekMethod Is one of the following values:
• NS_SEEK_SET (0) indicates the file pointer should be

set to the location specified by where.
• NS_SEEK_SET (1) indicates the file pointer should be

set to its current location plus where.
• NS_SEEK_END (2) indicates the file pointer should be

set to the end of the file plus where.

Using Adobe PDF Converter SDK 151

NSClientFile API 14

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSTruncateProc()
int (*NSTruncateProc)(NSClientDataPtr clientData,
NSClientFileID fd, long where);

NOTE: Although the NSTruncateProc() callback is required, Adobe PDF Converter
SDK never invokes it. The NSClientFile API includes it with future development
in mind.

Description
The NSTruncateProc() callback directs the client to terminate the file at a
particular position. Any bytes occurring beyond that position are lost.

Parameters

Return Value
The client returns a value that indicates the success or failure of the function. The
value 0 indicates success; the value -1 indicates failure. A failure return typically
causes the current job to fail with an ioerror and causes the
NormalizerServerRunJob() function to return with the
normPostScriptError enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

fd Client file ID, which is the client’s file identifier.

where The position just beyond which file should be truncated.

NSClientFile API14

152 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSWriteProc()
int (*NSWriteProc)(NSClientDataPtr clientData,
NSClientFileID fd, char *buf, unsigned int count);

Description
The NSWriteProc() callback requests that data be written to the client file
specified by fd.

Parameters

Return Value
The client returns a value that indicates the success or failure of the callback. A
non-negative value indicates the number of bytes the client successfully read. A value
of -1 indicates failure. A failure return typically causes the current job to fail with an
ioerror and typically causes the NormalizerServerRunJob() function to return
with the normPostScriptError enumeration value.
If the client returns a success indication, but the number of bytes written to the file is
not the same as count, the job fails with an ioerror and
NormalizerServerRunJob() returns with the normPostScriptError
enumeration value.

Header File
apcif.h

clientData A pointer to the client’s private data.

fd Client file ID, which is the client’s file identifier.

buf A pointer to area where data read from the file should be
stored. Adobe PDF Converter SDK is responsible for
allocating and freeing this memory.

count The number of bytes that the client should read into buf.

Using Adobe PDF Converter SDK 153
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

15 Conversion of Image Files to PDF

Using the Adobe PDF Converter SDK you can convert image files to PDF files. The
SDK supports the conversion of JPEG, BMP, TIFF, and PNG image files to PDF files.
Image to PDF conversion also supports alpha channel in image formats and converts
them to softmask in PDF file.
The following APIs are available for conversion:
APCCreateDoc()
APCConfigureImageJob()
APCAddImage()
APCStartFile()

Using Adobe PDF Converter SDK 155
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

16 Conversion of PPML Files to PDF

Using the Adobe PDF Converter SDK, you can convert PPML files to PDF files. The
SDK supports the conversion of PPML 2.1 specification files to PDF files.
The API available for conversion is APCConvertPPMLToPDF().

Limitations of PPML Implementation
APCConvertPPMLToPDF() supports all PPML file conforming to PPML 2.1
specification. However, implementation of a few PPML tags is not supported.
Given below is the list of PPML tags which are not supported in APC 3.2:
• FONT
• PROCESSOR
• CONFORMANCE
• TICKET
• TICKET_REF
• TICKET_SET
• TICKET_STATE
• SEGMENT_ARRAY
• SEGMENT_REF
• HOR_TRIM_MARKS
• VER_TRIM_MARKS
• HOR_FOLD_MARKS
• VER_FOLD_MARKS
• REPEAT

NOTE: If a PPML file contains these tags then it will be processed after ignoring these
tags

A key point to note is that the generated PDF from PPML contains DPart structure,
DPart MetaData and GTS keys information. But generated PDF is not PDF/X-4
compliant and hence it is not marked as PDF/VT file.

Using Adobe PDF Converter SDK 157
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

17 Dynamic N Page PDF Generation

When converting a PS file/stream to a PDF file, you can intercept the conversion at a
specific page and notify Adobe PDF Converter SDK to include pages only up to the
point of interception, in the output PDF stream. The client indicates the page at which
the conversion is to be intercepted, by implementing the APCEndPage() call back.
The following APIs are available for Dynamic N Page PDF generation:
APCInit()
APCEnableDynamicGeneration()
The following callbacks need to be implemented by the client for Dynamic N page
PDF generation:
APCStartFile()
APCEndFile()
APCEndPage()
Following is the structure that the client needs to initialize for Dynamic N page PDF
generation:
APCClientConfig Structure

17.1 Improvement in Dynamic N Page PDF Generation
The decision to create a PDF file can now be made at the time of device activation.
Device activation can happen either by a call to setpagedevice operator or when
PostScript VM graphic state is resorted with a call to restore operator. In both these
cases APCEndPage() callback is called which can take decision to create new PDF
file based on SPDKeyValue list.
This functionality is also enabled with +g option on command line.
The demo code function DemoEndPageV2 implements a simple state mechanism
where a new PDF file is created whenever value of staple key changes from 0 to 1
and vice versa.

Dynamic N Page PDF Generation
Improvement in Dynamic N Page PDF Generation

17

158 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

For example, in the following PS Snippet, 3 PDF files are created. First PDF file will
have 2 pages, second PDF file will have 1 page and third PDF file will have 2 pages.

%!PS
<< /Staple 1 >> setpagedevice
100 100 moveto
/Helvetica findfont 8 scalefont setfont
(Page 1)show
showpage
100 100 moveto
/Helvetica findfont 8 scalefont setfont
(Page 2)show
showpage
save
<< /Staple 0 >> setpagedevice
100 100 moveto
/Helvetica findfont 8 scalefont setfont
(Page 3)show
showpage
restore
100 100 moveto
/Helvetica findfont 8 scalefont setfont
(Page 4)show
showpage
<< /Staple 1 >> setpagedevice
100 100 moveto
/Helvetica findfont 8 scalefont setfont
(Page 5)show
showpage

Using Adobe PDF Converter SDK 159
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

18 Structures and Enumerations

This chapter provides reference information about the structures and enumerations
your client software uses to interface with Adobe PDF Converter SDK.

APCClientConfig Structure
typedef struct _t_APCClientConfig {
/* Client's private data pointer, passed back through
callbacks. */
NSClientDataPtr clientData;
NSClientConfig* config;
/* clients's call backs */
APCEndPage endOfPageV2;
APCStartFile startOfFile;
APCEndFile endOfFile;
} APCClientConfig;

Description
The APCClientConfig structure contains configuration information that the client
passes to Adobe PDF Converter SDK in the call to APCInit().

Header File
apcif.h

Members

clientData A pointer to client-provided private data. This
pointer is passed back in all callbacks from Adobe
PDF Converter SDK to the client. This structure is
opaque to Adobe PDF Converter SDK.

config pointer to structure NSClientConfig. This structure
contains configuration information that the client
passes to Adobe PDF Converter SDK in the call to
NormalizerServerInit().

endOfPageV2 Funtion pointer to APCEndPage callback.

Structures and Enumerations18

160 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

startOfFile Funtion pointer to APCStrartFile callback

endOfFile Funtion pointer to APCEndFile callback

Using Adobe PDF Converter SDK 161

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerResult
typedef enum {

normOk,
normParameterError,
normPostScriptError,
normOutOfMemory,
normOutOfDiskSpace,
normInternalError,
normClientCancel,
normNotNow,
normIncorrectInterfaceVersion,
normAlreadyInitialized,
normHasNotInitialized,
docNotCreated,/* Unable to create an empty doc */
fileNotFound,
incorrectImageFormat,
fileNotSaved,
incorrectPDFFormat,
unknownError,
docAlreadyCreated

} NormalizerResult;

Description
All Adobe PDF Converter SDK functions return one of the NormalizerResult
enumerators to indicate the status of the function.

Header File
apcif.h

Members

normOk The function was successful.

normParameterError The client has passed an invalid parameter.

normPostScriptError The file contained a PostScript error.

normOutOfMemory Memory is insufficient to complete the function.

normOutOfDiskSpace Disk space is inadequate to complete the function.

normInternalError An internal Adobe PDF Converter SDK error has
occurred.

Structures and Enumerations18

162 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

normClientCancel The client cancelled the function.

normNotNow The requested operation is not currently permitted.

normIncorrect
InterfaceVersion

The interfaceVersionNum supplied in
NormalizerServerInit() is not compatible
with the Adobe PDF Converter SDK code being
initialized.

normAlreadyInitialized NormalizerServerInit() was called more
than once.

normHasNotInitialized NormalizerServerInit() was called before
NormalizerServerShutdown() was called.

docNotCreated The converter cannot create a doc stream either
because of insufficient space or an i/o error on the
client side.

fileNotFound The image file does not exists at the image path
provided by the client.

incorrectImageFormat The image format is not supported for conversion
by the converter.

fileNotSaved The converter is unable to save the doc stream to
the PDF file specified by the client due to i/o issues
on the client side.

incorrectPDFFormat Reserved for future use.

unknownError An unknown error occured in file i/o on the client
side.

docAlreadyCreated The client made a new call to APCCreateDoc()
without saving the document opened previously
with APCCreateDoc().

Using Adobe PDF Converter SDK 163

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NormalizerSidelineType
typedef enum {

normSidelineFontNoLongerSupported,
/* Font data - no longer supported (From Norm 6.0)*/

normSidelineImage,/* Image data */
normSidelineEPS,/* EPS file */
normCreateRefXObj

} NormalizerSidelineType;

Description
The NormalizerSidelineType enumerators are types of data that can be
sidelined to external files in the NSCreateExternalFile() callback.

NOTE: The argument normSideLineFont is no longer available.

Header File
apcif.h

Structures and Enumerations18

164 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NORMSearchList

NORMSearchListRec
typedef struct _t_NORMSearchListRec{

char *path;
struct _t_NORMSearchListRec *next;
void *extension;
normBool matchingOnly;

} NORMSearchListRec, *NORMSearchList;

Description
The NORMSearchList structure is a linked list of directory names used to search for
finding resources, such as font files.
Adobe PDF Converter SDK locates a file by appending the filename to each path
string on the search list in turn and checking whether the resulting pathname is a file
that can be opened. A NULL next pointer identifies the end of the search list. Adobe
PDF Converter SDK begins its search with the first path on the search list and
terminates as soon as it finds the required or it reaches the end of the list.
If an empty search list (NULL pointer) is provided when a search list is required,
Adobe PDF Converter SDK looks for the file in the current working directory only. If
the search list is not empty, it looks for the file only in the directories in the list. It uses
the current working directory if the path member of a search list entry is NULL.

Header File
apcif.h

Members

path A string to which a filename can be appended, for example,
fonts/

NOTE: Path must use be encoded using the standard
character format rather than the UNICODE one. It must
also be terminated with a platform-specific separator, such
as “/” or “\”.

next A pointer to next search list element or NULL.

Using Adobe PDF Converter SDK 165

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

extension A pointer to additional OS-specific information used only for
Macintosh platforms. Adobe PDF Converter SDK appends
*extension to a font name to obtain the name of the file
in which the desired font program or FontFile object is
stored.

matchingOnly If TRUE, Adobe PDF Converter SDK uses the TrueType
fonts in the folder to perform internal font matching for
Unicode and OS/2 information. If FALSE, Adobe PDF
Converter SDK uses such fonts to resolve findfont
PostScript/PDF commands.
Examples of situations in which setting the flag helps:
• Distinguishing between identically-named TrueType

fonts in different folders. If two Arial TrueType font files
exist in two different folders, only one of them will be
used for findfont. findfont always uses the first one found
in the folder listis useful for Adobe PDF Converter SDK
to match a Type42 font against both Arial TrueType font
files to see if any of them match. In such a situation, set
the second folder with matchingOnly set to TRUE.

• Matching a TrueType font to an embedded PostScript
font equivalent. If only one Arial TrueType font exists and
somehow the system font folder is deleted from the Font
Locations dialog. For a PostScript job that has a
Type42 of this Arial TrueType font embedded, it is also
useful to see this Arial TrueType font for
matchingOnly, not for findfont because the folder is
not in Font Locations.

Structures and Enumerations18

166 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSClientConfig
typedef struct _t_NSClientConfig {

NSClientDataPtr clientData;
/* Client's callbacks: */

NSStartPage startOfPage;
NSEndPage endOfPage;
NSBufferHandOff bufHandOff;
NSBufferGetPS bufGetPS;
NSBackChanMsg backChanMsg;
NSBackChanMsg feedBackMsg;
NSErrorMsg errorMsg;
NSProcessComment processComment;
NSCreateExternalFile createExternalFile;
NSCloseExternalFile closeExternalFile;
NSProgress progress;
NSExternalCommandProc externalCommand;
NSDupFontNotifyProc dupFontNotify;
NSMoreMemoryProc moreMemory;
NSFreeMemoryProc freeMemory;
NSCantHappenProc cantHappen;
NSExitProcessProc exitProcess;
NSCustomResourceDevInit customResourceDevInit; /*OBSOLETE */
NSCustomRegisterFauxFontProc

customRegisterFauxFontProc; /* OBSOLETE */
NORMSearchList resourceSearchList;
char * scratchFileDirectory;
char * initialVMFile;
char * atmFile;
char * startupFile;
char * licenseID;
unsigned int serialnumber;
unsigned int progressQuantum;
int setpagedeviceKeysCount;
int *setpagedeviceKeysList;
unsigned int initialVMSize;
char * productName;
char * languageCode;
normBool runningAsServer;
char * versionString;
int intinterfaceVersionNum;
NORMSearchList hostfontSearchList;

Using Adobe PDF Converter SDK 167

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

char *fileSecurityWorkingDir;
NORMSearchList fileSecurityDirList;
char * hostFontCacheDir;
unsigned long hostFontCacheSize;
NORMSearchList iccProfileDirList;
unsigned int iccProfilesStandardFolders;
NSExternalProcessCommentSetupProc externalProcessCommentSetup;
NSExternalProcessCommentProc externalProcessComment;
NSExternalProcessCommentCleanupProc externalProcessCommentCleanup;
NSGetHostFontMutexProc getHostFontMutex;
NSReleaseHostFontMutexProc releaseHostFontMutex;
normBool ignoreStdTTFonts;
long int ramDiskSize;

} NSClientConfig;

Description
The NSClientConfig structure contains configuration information that the client
passes to Adobe PDF Converter SDK in the call to NormalizerServerInit().

Header File
apcif.h

Members

clientData (Optional) A pointer to client-provided private
data. This pointer is passed back in all callbacks
from Adobe PDF Converter SDK to the client.
This structure is opaque to Adobe PDF Converter
SDK.

NOTE: The next several fields after clientData and before
resourceSearchList contain the client's callbacks, NSStartPage() through
NSFreeMemoryProc(), which are listed in the structure definition. For details on
these callbacks, see Chapter 13, “Functions and Callbacks”.

Structures and Enumerations18

168 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

resourceSearchList (Required) References a location containing the
PostScript fonts directory. The directory name
typically is of the form fonts\. You must set this
field for backward compatibility with PostScript
programs. Use hostfontSearchList (below)
for the fonts\ directory and all other font
directories.
If resourceSearchList is NULL,
NormalizerServerInit returns with the
normParameterError enumeration as its
result.
The referenced character string must be encoded
using a standard eight bit character encoding and
must be terminated with a platform-specific
separator, such as “/” or “\”.
NOTE: The fonts\ directory must contain at least
one PostScript font entry.
NOTE: It is recommend that you set
resourceSearchList to the default fonts
directory supplied with Adobe PDF Converter
SDK, and use hostfontSearchList to
specify additional font locations. You should
duplicate the default fonts folder in
hostfontSearchList.

scratchFileDirectory (Required) References a location containing the
directory name where Adobe PDF Converter
SDK can store temporary files.
scratchFileDirectory must not be NULL.
NOTE: The referenced character string must be
encoded using standard characters and must be
terminated with a platform-specific separator,
such as “/” or “\”.

Using Adobe PDF Converter SDK 169

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

initialVMFile (Required) References a location containing the
path name for the initial PostScript VM file. Adobe
PDF Converter SDK uses that file to initialize
virtual memory in the PostScript Interpreter.
If initialVMFile is NULL or references a
zero-length character string,
NormalizerServerInit() returns with the
normParameterError enumeration as its
result.
NOTE: The referenced character string must use
standard characters.

atmFile (Optional) References the client storage location
of the path name for the Adobe Type Manager®
(ATM) database file. Adobe PDF Converter SDK
uses the information contained in this file to
synthesize missing fonts.
NOTE: The referenced character string must be
encoded using the standard character format
rather than the UNICODE one.

startupFile (Optional) References the pathname for the
startup PostScript file, which Adobe PDF
Converter SDK uses to initialize the PostScript
Interpreter.
If startupFile is NULL or references a zero-
length string, Adobe PDF Converter SDK instead
uses default values in place of the information
provided in such a startup file.
Unlike CPSI, Adobe PDF Converter SDK does
not call the PostScript procedure
GetOEMProcedure until AFTER running
startupnorm.ps. As a result, use of
makeoperator in your startup program will result
in an error. To work around this limitation, do
custom startup in a separate job after
initialization.
NOTE: The referenced character string must be
encoded using the standard character format
rather than the UNICODE one.

Structures and Enumerations18

170 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

licenseID (Optional) References the license ID, which is
required for copy protection of CJK fonts.
NOTE: The referenced character string must be
encoded using the standard character format
rather than the UNICODE one.

serialnumber (Optional) The serial number used to access CJK
fonts.

progressQuantum (Optional) The approximate number of PostScript
operations that Adobe PDF Converter SDK
should process before calling the NSProgress
callback. If this field is 0, the default value of 1000
is used.

setpagedeviceKeysCount (Optional) The number of page device keys in the
setpagedeviceKeysList array.

setpagedeviceKeysList (Optional) A pointer to an array of integers that
represent the page device keys that Adobe PDF
Converter SDK should report to the client. The
integers are the enumerated page device keys
listed in the file spdkeys.h.
NOTE: This list is defined in the demoSpdKeys
array in the file demomain.c.

initialVMSize (Required) The number of bytes of memory used
for the initial VM state of the PostScript
Interpreter. The reference system value of 8
megabytes should be acceptable in all products.
Adobe PDF Converter SDK verifies that the value
provided for initialVMSize is within the
range of 1 to 64 megabytes. If it is not,
NormalizerServerInit() returns with the
normParameterError enumeration as its
result.

productName (Optional) References the character string that
Adobe PDF Converter SDK writes into the
Producer field of those PDF files produced by
Adobe PDF Converter SDK. The maximum
length of this string is 31 characters, a value
which is set in the MAX_PRODUCTNAME definition.
NOTE: The referenced character string must be
encoded using the standard character set.

Using Adobe PDF Converter SDK 171

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

languageCode References the language code, which is required
for the ACE engine.
• See democonverter.c for example code

to set this.
• If pointer is NULL, Adobe PDF Converter SDK

will default to US English ("ENG").
• If provided, should be three characters long.

Recommend setting this to NULL unless
otherwise advised by Adobe.

runningAsServer When TRUE, host based (ATM fonts) CID font
support is disabled except for OpenType J fonts.

versionString References a string containing the build version
that is set by Adobe PDF Converter SDK.

interfaceVersionNum An integer representing the interface version
number. To ensure that anyone upgrading from
an earlier version will get a clean error rather than
a crash, the value should be set to:
NORMALIZER_INTERFACE_VERSION_NUMBER.
If the interface version is incompatible with the
Adobe PDF Converter SDK code, the following
error is returned at initialization:
normIncorrectInterfaceVersion (=8)

Structures and Enumerations18

172 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

hostfontSearchList A list of font directories to be searched for host
fonts. It can include the ATM font directory, the
system font directory, the printer CMAP directory,
and the printer fonts directory. (The directories
must be in the form described in Section 5.3.2,
“Specifying Pathnames in Command Lines” on
page 39.)
Adobe PDF Converter SDK uses the
matchingOnly field of the
hostfontSearchList struct, but not the
extension field.
If more than one instance of Adobe PDF
Converter SDK is running on a machine, and all
the instances are sharing a host font cache, then
the hostfontSearchList for each Adobe PDF
Converter SDK instance must be identical. In
addition, NormalizerNewHostFontList()
must not be used to change the
hostfontSearchList values.
NOTES: This list must contain at least one entry.

fileSecurityWorkingDir Allows you to restrict the directories in which the
PostScript Interpreter may search to resolve
PostScript file operators.
fileSecurityDirList is a linked-list of
NORMSearchList structures that specify
directories in the underlying filesystem (the
%os% storage device).
Set to NULL for no additional security.
For more information in restricting the system
access of PostScript files, see Chapter 11.
NOTE: The referenced character string must be
encoded using standard characters and must be
terminated with a platform-specific separator,
such as “/” or “\”.

Using Adobe PDF Converter SDK 173

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

fileSecurityDirList Allows you to specify the PostScript Interpreter’s
working directory.
At the PostScript language level, filenames can
be specified as fully qualified pathnames or as
relative pathnames.If a filename is specified as
relative, the PostScript Interpreter prepends the
pathname of the working directory to the relative
pathname. As a result, you can disallow relative
pathnames by omitting a value for
fileSecurityWorkingDir.
NOTE: The referenced character string must be
encoded using the standard character set and
must be terminated with a platform-specific
separator, such as “/” or “\”.
For more information in restricting the system
access of PostScript files, see Chapter 11.

hostFontCacheDir References a string containing the pathname of
the host font cache file.
NOTE: The referenced character string must be
encoded using the standard character set.
NOTE: Prior to starting Adobe PDF Converter
SDK, Mac implementations must ensure the
directory specified by hostFontCacheDir
exists.

hostFontCacheSize The maximum size in bytes of the host font
cache.
NOTE: The greater of hostFontCacheSize and
1,536,000 bytes, the minimum size, will be used.

jdfInitStruct PDF Converter SDK does not support JDF.
Hence, set the value of this member to NULL.

Structures and Enumerations18

174 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

iccProfileDirList A custom list of directories to be searched for ICC
profiles. Support for iccProfileDirList and
iccProfilesStandardFolders is platform
specific, as described below:
• On Windows, Adobe PDF Converter SDK

supports both iccProfileDirList and
iccProfilesStandardFolders, with the
following exception: if
iccProfilesStandardFolders is set to
ICCPROFILES_USE_ADOBE_STANDARD_ONLY,
the standard ACE folders are used and
iccProfileDirList is ignored.

• On Linux Adobe PDF Converter SDK supports
only iccProfileDirList.

Using custom ICC profile folder locations allows
you to use profiles without needing to install them
in the system default ICC profile directories.
REQUIREMENTS: To prevent the Adobe PDF
Converter SDK initialization error
normParameterError, you must do the
following:
• Specify at least one ICC profile folder in
iccProfileDirList or at least one profile
directory type (using
iccProfilesStandardFolders).

• The default ICC profiles shipped with Adobe
PDF Converter SDK must be included in the
specified folders.

See also “Requirement for “iccprofiles” Folder” on
page 84.

Using Adobe PDF Converter SDK 175

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

iccProfilesStandardFolders
(Windows only)

Allows you to specify predefined flags that direct
Adobe PDF Converter SDK to certain ICC profile
locations. iccProfilesStandardFolders
may represent a combination of the locations,
which you specify by OR’ing together the types of
profiles to use (described below):
• ICCPROFILES_USE_ADOBE_STANDARD_ONLY

references the standard Adobe ACE folders.
• ICCPROFILES_ADOBE_COLOR_RECOMMENDED

references the Adobe recommended color
profiles folder. (Windows only)

• ICCPROFILES_ADOBE_COLOR references the Adobe
color profiles folder. (Windows only)

• ICCPROFILES_SYSTEM_COLOR references the
system color profiles folder. (Windows only)

• 0 (zero). Directs Adobe PDF Converter SDK to
use ONLY iccProfileDirList.

If multiple locations are specified, the order in
which they are searched is as follows:
• If ICCPROFILES_USE_ADOBE_STANDARD_ONLY is one

of the locations, ACE determines the order.
• Otherwise, the order is as follows:

1. Folders specified in iccProfileDirList
2. ICCPROFILES_ADOBE_COLOR_RECOMMENDED
3. ICCPROFILES_ADOBE_COLOR
4. ICCPROFILES_SYSTEM_COLOR

NOTE: See additional notes in the description for
iccProfileDirList. (above)

externalProcessCommentSetup This field contains the client’s callback
NSExternalProcessCommentSetupProc(),
which is listed in the structure definition. For
details on this callback, see Chapter 13,
“Functions and Callbacks”.

externalProcessComment This field contains the client’s callback
NSExternalProcessCommentProc(), which
is listed in the structure definition. For details on
this callback, see Chapter 13, “Functions and
Callbacks”.

Structures and Enumerations18

176 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

externalProcessCommentCleanup This field contains the
NSExternalProcessCommentCleanupProc(
) client callback, which is listed in the structure
definition. For details on this callback, see
Chapter 13, “Functions and Callbacks”.

getHostFontMutex A handle that acquires a global mutex and then
effectively locks the host font cache to prevent
more than one instance of Adobe PDF Converter
SDK from simultaneously writing to the font
cache.

releaseHostFontMutex Releases the global mutex acquired by
getHostFontMutex and unlocks the host font
cache for other instances of Adobe PDF
Converter SDK.

ignoreStdTTFonts If TRUE, Adobe PDF Converter SDK ignores the
TrueType versions of certain standard PostScript
fonts (Appendix A). This setting can also be
changed by
NormalizerNewHostFontList().
ignoreStdTTFonts corresponds to the Ignore
TrueType versions of standard PostScript
fonts button of the Acrobat Distiller-Font
Locations dialog.
In earlier versions of Adobe PDF Converter SDK,
ignoreStdTTFonts was always TRUE.
If the destination printing system has standard
PostScript fonts installed, setting this field to
TRUE causes Adobe PDF Converter SDK to use
the same font that will be used by the printer.

ramDiskSize It is used to set maximum size (in bytes) of the
ramDisk (RAM). APC creates multiple temporary
files for storing PDF object data. If size of
temporary file is less than ramDiskSize then such
files will be stored in memory instead of writing to
file.
Note: ramDiskSize parameter does not restricts
ram usage. This only restricts size of an individual
temporary files.

If ramDiskSize is given less than zero, the size
reverts to the default value, which is 20 MB.

Using Adobe PDF Converter SDK 177

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSClientDataPtr
typedef void *NSClientDataPtr;

Description
NSClientDataPtr is a pointer to private client data. This pointer is passed back in
all callback functions from Adobe PDF Converter SDK to the client. It is defined as
void because it is opaque to the server.

Header File
apcif.h

Structures and Enumerations18

178 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSClientFileID
typedef union {

void *ptr;
int index;

} NSClientFileID;

Description
NSClientFileID is a union of an pointer and an integer. Adobe PDF Converter
SDK’s clients use this file ID along with a set of NSClientFile API callbacks to
manage the I/O on files used by PDF Converter SDK.

Header File
apcif.h

Using Adobe PDF Converter SDK 179

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSClientFile

NSClientFileRec
typedef struct _t_NSClientFile{

NSClientFileID fd;
NSClientFileProcs procs;

} NSClientFileRec, *NSClientFile;

Description
A structure that associates a file ID with the callbacks Adobe PDF Converter SDK
uses to create/read/write that file. See also Chapter 14, “NSClientFile API”.

Header File
apcif.h

Members

fd The file ID.

procs The address of a NSClientFileProcs structure that
defines callbacks used with the NSClientFile API.

Structures and Enumerations18

180 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSClientFileProcs
typedef struct _t_NSClientFileProcs{

NSReadProc ReadProc;
NSWriteProc WriteProc;
NSSeekProc SeekProc;
NSCloseProc CloseProc;
NSTruncateProc TruncateProc;
NSBufsizeProc BufsizeProc;

} NSClientFileProcsRec, *NSClientFileProcs;

Description
A structure, which defines a set of NSClientFile API callbacks.

Header File
apcif.h

Using Adobe PDF Converter SDK 181

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSMemoryAllocInfo
typedef struct _t_NSMemoryAllocInfo {
normBool CanAllocateExtraMemory;
normBool WillMemoryBeFreed;
NSClientDataPtr pClientDataPtr;
} NSMemoryAllocInfo, *NSMemoryAllocInfoPtr;

Description
A structure, containing information about memory location.

Header File
apcif.h

Members

CanAllocateExtr
aMemory

Can allocate the more memory than requested. Only VM
can use more memory than requested other ignores the
extra memory.

WillMemoryBeFre
ed

Will memory be freed at the closing of application. VM frees
the memory at the end of application because VM reuses
that memory again and again. While other free after the work
related to that memory is done.

pClientDataPtr ClientData pointer set by the product.

Structures and Enumerations18

182 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSMemoryFreeInfo
typedef struct _t_NSMemoryFreeInfo {
NSClientDataPtr pClientDataPtr;
} NSMemoryFreeInfo, *NSMemoryFreeInfoPtr;

Description
A structure, containing information about memory freeing.

Header File
apcif.h

Members

pClientDataPtr ClientData pointer set by the product.

Using Adobe PDF Converter SDK 183

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSJobParams
typedef struct _t_NSJobParams

char * fullDocFileName;
unsigned int

fontAllowMM:1,
filePerPage:1,
sidelineEPS:1;
fontEmbedJobsFonts:1,
CreateRefXObj:1, /*Create Reference XObjects from PS
Forms rather than embedding those XObjects in the host
PDF file*/
fulldocfileCreation:1, /*Allow creation of full
document pdf file. */
disableAutoT1Embed:1,
TextPositionOptimization:1; /*Switch on the text
position optimization for smaller pdf file size*/

NSClientFile fullDocClientFile;
char * jobOptions;
NSBufferGetPS bufGetJobOptions;
NSRunMethod runMethod;
char * outputResourceFinalStatus;
long maxdistilltime;

} NSJobParams;

Description
The NSJobParams structure contains job parameters that the client provides to
Adobe PDF Converter SDK for each PostScript file.
Adobe PDF Converter SDK obtains default values for fields like page size, resolution,
and several font-related parameters from job options, although the page size and
resolution parameters are frequently over-ridden by the PostScript stream/file.

Header File
apcif.h

Structures and Enumerations18

184 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Members

fullDocFileName Pointer to a string that specifies the pathname for
the full-document PDF file created by Adobe
PDF Converter SDK. Used only if runMethod
==normRunJobOptions.
This string must be encoded using the standard
character format and may contain up to 1,023
characters. Adobe PDF Converter SDK uses its
default file I/O methods to create the file.
If NULL, Adobe PDF Converter SDK uses the
NSClientFile API provided by
fullDocClientFile to output the full-
document PDF file.
If both fullDocFileName and
fullDocClientFile are provided,
fullDocFileName is used.
NOTE: You should use the NSClientFile API
provided by fullDocClientFile to output
the full-document PDF file.

fontAllowMM:1 A (1 bit) font policy flag:
• If TRUE, Adobe PDF Converter SDK attempts

to synthesize missing fonts using metric
information from the ATM font database.

• If FALSE, Adobe PDF Converter SDK
attempts to replace any missing fonts with the
font specified in the fontDefaultName field
(described below), or, if not provided, with
Courier.

filePerPage:1 A 1-bit flag: If TRUE, Adobe PDF Converter SDK
produces PDF page streams, provided the client
has not disabled distillation.

sidelineImages:1 A 1-bit flag: If TRUE, Adobe PDF Converter SDK
stores embedded or external images in external
files.

sidelineEPS:1 A 1-bit flag: If TRUE, Adobe PDF Converter SDK
stores embedded EPS files in external files
without distilling them.

Using Adobe PDF Converter SDK 185

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

fontEmbedJobsFonts:1 A 1-bit flag. If TRUE, Adobe PDF Converter SDK
embeds in the PDF file fonts that are embedded
in the PostScript. If FALSE, Adobe PDF
Converter SDK embeds such fonts ONLY if the
Distiller parameters dictate embedding.
Regarding fonts that are referenced from but not
embedded in the PostScript, Adobe PDF
Converter SDK embeds such fonts ONLY if the
Distiller parameters dictate embedding.

CreateRefXObj:1 A 1-bit flag. If TRUE, Adobe PDF Converter SDK
creates reference Xobjects from PS Forms rather
than embedding those Xobjects in the host PDF
file. This flag is applied only for PDF versions
later than 1.4.

fulldocfileCreation:1 A 1-bit flag. If FALSE, Adobe PDF Converter
SDK does not create a full document PDF.

disableAutoT1Embed:1 A 1-bit flag. If TRUE, Adobe PDF Converter
doesn’t auto embed Type 1 fonts whose
CharStrings dict length > 229

TextPositionOptimization:
1

A 1-bit flag. If FALSE, Adobe PDF Converter
SDK does not apply text position optimization.

fullDocClientFile A pointer to a structure of callbacks Adobe PDF
Converter SDK can use to output the full-
document PDF file, as described for
fullDocFileName in this structure.
fullDocClientFile points to a
NSClientFileProcs structure that defines
callbacks used with the NSClientFile API.
You may implement this API to support either
standard or UNICODE characters.
The NSClientFile API does not provide a
function for opening a file, so the client must
open the file for full-document PDF object, before
calling NormalizerServerRunJob().

jdfFileName PDF Converter SDK does not support JDF.
Hence, set the value of this member to NULL.

jdfClientFile PDF Converter SDK does not support JDF.
Hence, set the value of this member to NULL.

Structures and Enumerations18

186 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

jdfInputPSFileName PDF Converter SDK does not support JDF.
Hence, set the value of this member to NULL.

 jobOptions Used only when
runMethod==normRunJobOptions.
jobOptions is a pointer to a buffer containing
a PostScript segment, which you can use to
initialize job options. If non-null, the segment is
processed before the job is run. If NULL, Adobe
PDF Converter SDK invokes the callback
provided in bufGetJobOptions.

IMPORTANT: The PostScript code provided by
jobOptions MUST call setdistillerparams
AND setpagedevice (and in that order) or
Adobe PDF Converter SDK will produce an
error on initialising. See democonverter.c
for an example of appropriate PostScript
code.

If both jobOptions and bufGetJobOptions
are NULL then the minimal PostScript snippet:
<< >> setdistillerparams << >> setpagedevice
is executed.
If both jobOptions and
bufGetJobOptions are given,
bufGetJobOptions is used.

bufGetJobOptions See jobOptions. See NSBufferGetPS()
for details on using the bufGetJobOptions
callback.

runMethod Possible value is normRunJobOptions.
If runMethod == normRunJobOptions, the
contents of the PostScript segment described by
jobOptions or bufGetJobOptions are
used to control the job.
Since PDF Converter SDK does not support JDF,
always set the value of runMethod to
normRunJobOptions.

outputResourceFinalStatus A string representing the value assigned to
Output resources, a resource definition process.
If set to NULL the status of each Output resource
(if any) will be set to “Incomplete”.
The memory holding the string must not be freed
until the job is finished.

Using Adobe PDF Converter SDK 187

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

maxDistillTime
(For Unix platforms only)

Represents the maximum number of seconds a
job is allowed to run. If this job parameter is set to
a positive value, then Adobe PDF Converter
SDK overrides the /JobTimeout parameter in
the PS file. If the time taken by a job exceeds the
value set for the maxDistillTime parameter,
then Adobe PDF Converter SDK aborts the
current job, and stops without executing the
remaining jobs.

Structures and Enumerations18

188 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSFileDataPtr
typedef void *NSClientDataPtr;

Description
NSFileDataPtr is a pointer to data associated with a file. A pointer of this type is
passed back to all callback functions associated with file I/O. Like
NSClientDataPtr, it is opaque to Adobe PDF Converter SDK.

Header File
apcif.h

Using Adobe PDF Converter SDK 189

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSPageInfo
typedef struct _t_NSPageInfo

char *plateColor;
char *pageLabel;

} NSPageInfo;

Description
The NSPageInfo structure contains information about a page, passed by the
NSEndPage() callback.

Header File
apcif.h

Members

plateColor A pointer to a string. If non-null, the string is the name of
plate color claimed by the PS job.

pageLabel A pointer to a string. If non-null, string is the page label
specified by PS job.

JDFHandle PDF Converter SDK does not support JDF. Hence, set the
value of this member to NULL.

Structures and Enumerations18

190 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

NSServerDataPtr
void *NSServerDataPtr;

Description
The NSServerDataPtr is an opaque pointer to Adobe PDF Converter SDK’s private
data. It is returned to the client by NormalizerServerInit(). The client passes it into all
Adobe PDF Converter SDK functions.

Using Adobe PDF Converter SDK 191

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

PDFX4Setting
typedef struct _t_PDFX4Setting {
unsigned short autoCorrectOPM : 1
unsigned short useOneTransferFunctionPerColorant : 1;
unsigned short unused: 14;
} PDFX4Setting;

Description
A structure containing PDFX-4 Setting.

Header File
apcif.h

Members

autoCorrectOPM As per PDF/X-4 compliance Section 6.4.3.3 4 color ICC
based color space shall have overprint mode set to zero If
value of this key is 1 and current job is generating PDF/X-4
compliance PDF than APC will set OPM key to false for such
color space. Otherwise APC will generate violation. (default
value is 0).

useOneTransferF
unctionPerColor
ant

As per PDF/X-4 compliance section 6.4.3.4 each separation
array in a single PDF/X-4 file that have same name shall
have same tint transform. If value of this key is true than
APC will use first tint transform function for same separation
color, Otherwise, if there are multiple tint transform function
for a separation color name than APC will generate violation.
(default value is 0).

unused For future reference.

Structures and Enumerations18

192 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

PNSHostFontListData

NSHostFontListData
typedef struct _t_NSHostFontListData {

unsigned char *signature;
char *fontName;
char *pathName;
normBool widthsOnly;
normBool isHexName;
normBool hasProtection;
unsigned short int fsType;
unsigned short int resolution;
normBool isBound;
normBool bindingOK;
normBool periodic;
normBool outlineOK;
normBool toCache;
normBool isTrueType;
normBool inFontCache;

} NSHostFontListData, *PNSHostFontListData;

Description
The NSHostFontListData structure describes the characteristics of a host font list
parameter to the NSDupFontNotifyProc() callback.

Header File
apcif.h

Members

signature MD5 hash value for the font.

fontName A pointer to the name string of the font. Example of such font
name strings are:
/Name
Resource/CIDFont/Name
Resource/CMap/Name

pathName A host-dependent pathname to an external file.

widthsOnly TRUE if the font is the “width-only” font.

Using Adobe PDF Converter SDK 193

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

isHexName TRUE if the font name is artificially generated using a
hexadecimal representation of checksums

hasProtection TRUE if the fields following are valid (the font has protection
information)

fsType Flag that indicates whether the font is embeddable. The
interpretation of each flag bit is same as FSType field in the
TrueType OS/2 table.

resolution Highest resolution (in dpi, inclusive) the font is allowed to be
used.

isBound Flag that indicates whether the font is bound to platform. The
value is cached by the hostfontstodev package.

bindingOK Flag that indicates whether the platform binding is validated.
The %hostfont% will return NULL stream if the isBound is
true and this flag is FALSE.

periodic Flag that indicates whether the platform binding needs to be
verified periodically, most typically with a Dongle. If this flag
is TRUE, the platform binding is verified every 30 minutes.

outlineOK Flag that indicates accessibility of glyph outline.

toCache If FALSE, this font will not be cached to HostFontCache. The
client can set this field to false in order to screen out the
fonts that meet a certain condition from %hostfont% stodev.

Structures and Enumerations18

194 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

SPDKeyValue
typedef struct _t_SPDKeyValue {

char *keyName; /* Optional string representation of key
name */

int key; /* Dictionary key: SPDKey */
int type; /* Actually SPDValueType for value */
union {

long i;
float f;
char *s;
struct { float x; float y; } p; /* ordered pair */
struct _t_SPDKeyValue *l; /* Key/value list for */

/* array or dict value */
} value;
struct _t_SPDKeyValue *next; /* Pointer to next item */

/* in linked list */
} SPDKeyValue;

Description
SPDKeyValue is the structure used to represent key-value pairs internally.

Header File
spdkeys.h

Using Adobe PDF Converter SDK 195

Structures and Enumerations 18

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

typedef struct _t_ImageJobConfig {
unsigned int uncompressImage;

} ImageJobConfig, *ImageJobConfigP;

Description
ImageJobConfig is the structure used to configure the image to pdf conversion

Header File
apcif.h

Members
uncompressImage

If 0, then all images in generated PDF will contain compression.
if 1. then all images will be added to the PDF without any compression.
Users may choose not to compress images to reduce conversion time. However,
when uncompressimage =1, size of output PDF will be larger.

Using Adobe PDF Converter SDK 197
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

A Standard TrueType Fonts

Table A.1 lists the TrueType fonts Adobe PDF Converter SDK can use in place of
PostScript fonts, provided the ignoreStdTTFonts field of NSClientConfig struct is
FALSE.

TABLE A.1 Standard TrueType fonts considered by ignoreStdTTFonts

Font Name PostScript font name

Albertus® AlbertusMT
AlbertusMT-Italic
AlbertusMT-Light

Antique Olive® AntiqueOlive-Bold
AntiqueOlive-Compact
AntiqueOlive-Italic
AntiqueOlive-Roman

Arial® Arial-BoldItalicMT
Arial-BoldMT
Arial-ItalicMT
ArialMT

ITC Avant Garde Gothic® AvantGarde-Book
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique

Bauer Bodoni™ Bodoni
Bodoni-Bold
Bodoni-BoldItalic
Bodoni-Italic
Bodoni-Poster
Bodoni-PosterCompressed

ITC Bookman® Bookman-Demi
Bookman-DemiItalic
Bookman-Light
Bookman-LightItalic

Standard TrueType FontsA

198 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Clarendon*
(See attribution statement on
page ii.)

Clarendon
Clarendon-Bold
Clarendon-Light

Cooper Black CooperBlack
CooperBlack-Italic

Copperplate Gothic Copperplate-ThirtyThreeBC
Copperplate-ThirtyTwoBC

Courier Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique

Eurostile™ Eurostile
Eurostile-Bold
Eurostile-BoldExtendedTwo
Eurostile-ExtendedTwo

Gill Sans® GillSans
GillSans-Bold
GillSans-BoldCondensed
GillSans-BoldItalic
GillSans-Condensed
GillSans-ExtraBold
GillSans-Italic
GillSans-Light
GillSans-LightItalic

Goudy Goudy
Goudy-Bold
Goudy-BoldItalic
Goudy-ExtraBold
Goudy-Italic

TABLE A.1 Standard TrueType fonts considered by ignoreStdTTFonts (Continued)

Font Name PostScript font name

Using Adobe PDF Converter SDK 199

Standard TrueType Fonts A

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Helvetica*
(See attribution statement on
page ii.)

Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Condensed
Helvetica-Condensed-Bold
Helvetica-Condensed-BoldObl
Helvetica-Condensed-Oblique
Helvetica-Narrow
Helvetica-Narrow-Bold
Helvetica-Narrow-BoldOblique
Helvetica-Narrow-Oblique
Helvetica-Oblique

Joanna® JoannaMT
JoannaMT-Bold
JoannaMT-BoldItalic
JoannaMT-Italic

Letter Gothic LetterGothic
LetterGothic-Bold
LetterGothic-BoldSlanted
LetterGothic-Slanted

ITC Lubalin Graph® LubalinGraph-Book
LubalinGraph-BookOblique
LubalinGraph-Demi
LubalinGraph-DemiOblique

Marigold™ Marigold

ITC Mona Lisa® MonaLisa-Recut

New Century Schoolbook NewCenturySchlbk-Bold
NewCenturySchlbk-BoldItalic
NewCenturySchlbk-Italic
NewCenturySchlbk-Roman

TABLE A.1 Standard TrueType fonts considered by ignoreStdTTFonts (Continued)

Font Name PostScript font name

Standard TrueType FontsA

200 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Optima*
(See attribution statement on
page ii.)

Optima
Optima-Bold
Optima-BoldItalic
Optima-Italic

Oxford™ Oxford

Palatino*
(See attribution statement on
page ii.)

Palatino-Bold
Palatino-BoldItalic
Palatino-Italic
Palatino-Roman

Stempel Garamond*
(See attribution statement on
page ii.)

StempelGaramond-Bold
StempelGaramond-BoldItalic
StempelGaramond-Italic
StempelGaramond-Roman

Tekton® Tekton

Times*
(See attribution statement on
page ii.)

Times-Bold
Times-BoldItalic
Times-Italic
Times-Roman

Times New Roman® TimesNewRomanPS-BoldItalicMT
TimesNewRomanPS-BoldMT
TimesNewRomanPS-ItalicMT
TimesNewRomanPSMT

TABLE A.1 Standard TrueType fonts considered by ignoreStdTTFonts (Continued)

Font Name PostScript font name

Using Adobe PDF Converter SDK 201

Standard TrueType Fonts A

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Univers
(See attribution statement on
page ii.)

Univers
Univers-Bold
Univers-BoldExt
Univers-BoldExtObl
Univers-BoldOblique
Univers-Condensed
Univers-CondensedBold
Univers-CondensedBoldOblique
Univers-CondensedOblique
Univers-Extended
Univers-ExtendedObl
Univers-Light
Univers-LightOblique
Univers-Oblique

ITC Zapf Dingbats® ZapfChancery-MediumItalic

TABLE A.1 Standard TrueType fonts considered by ignoreStdTTFonts (Continued)

Font Name PostScript font name

Using Adobe PDF Converter SDK 195
Adobe Confidential Information

Covered under the applicable license agreement with Adobe.

B Apache Software License,
Version 1.1

/*
*This product includes software developed by the Apache Software Foundation
*(http://www.apache.org/).
*
*The Apache Software License, Version 1.1
*
*Portions Copyright (c) 1998-2000, 1999-2004, 1999 – 2000, 2000 – 2003 The Apache
*Software Foundation. All rights reserved.
*
*Redistribution and use in source and binary forms, with or without modification, are
*permitted provided that the following conditions are met:
*
*1. Redistributions of source code must retain the above copyright notice, this list
*of conditions and the following disclaimer.
*
*2. Redistributions in binary form must reproduce the above copyright notice, this
*list of conditions and the following disclaimer in the documentation and/or other
*materials provided with the distribution.
*
*3. The end-user documentation included with the redistribution, if any, must include
*the following acknowledgment:
*"This product includes software developed by the Apache Software Foundation
*(http://www.apache.org/)."
*Alternately, this acknowledgment may appear in the software itself, if and wherever
*such third-party acknowledgments normally appear.
*
*4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse
*or promote products derived from this software without prior written permission. For
*written permission, please contact apache@apache.org.
*
*5. Products derived from this software may not be called "Apache", nor may "Apache"
*appear in their name, without prior written permission of the Apache Software
*Foundation.

http://www.apache.org

Apache Software License, Version 1.1B

196 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

*THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
*INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
*FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
*SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
*PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
*BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
*DAMAGE.
*===
*This software consists of voluntary contributions made by many individuals on behalf
*of the Apache Software Foundation and was originally based on software copyright (c)
*1999, International Business Machines, Inc., http://www.ibm.com. For more
*information on the Apache Software Foundation, please see
<http://www.apache.org/>./

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Using Adobe PDF Converter SDK 205

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Index

Symbols
%disk0% 120
%diskn% 111

A
ACE.dll 29 to 30, 34
Acrobat Distiller 13
Adobe Color Engine (ACE) 29
Adobe Graphics Manager (AGM) 29
Adobe Type Manager database

See ATM database
AdobeACE 30
AdobeAGM 30
AdobeAX8SharedExpat 30
AdobeBIB 30
AdobeBIBUtils 30
AdobeCoolType 30
AdobeJP2K 30
AdobePDFL 30
AdobeRGB1998 32
AdobeXMP 30
AdobeXMP.dll 30
AGM.dll 29 to 30
allocating virtual memory 20
AlwaysEmbed 75
Apache software license 203 to 204
apc.dll 30
APCAddImage() 95
APCClientConfig 159
APCCreateDoc() 98
APCEnableDynamicGeneration() 101
APCEndFile() 103, 111
APCEndPage 104
apcif.h 33
APCInit() 105
apclib 30
APCSaveDoc() 108
APCStartFile() 110
AppleRGB 32
AppleTalk 18
architecture, JTP 25
ASBasic.h 33
ASEnv.h 33
ATM database 31
atmFile 169
AXE8SharedExpat.dll 30

B
BIB.dll 29 to 30
BIBUtils.dll 29 to 30
binding, platform validation 193
bindingOK 193
BlackWhite 32
Bravo Interface Binder (BIB) 29
Bravo Interface Binder Utilities 29
bufGetJobOptions 186

C
callbacks

APCEndFile 103
APCEndPage() 104
APCStartFile 110
externalcommand PostScript operator 67 to 68
NSBackChanMsg() 121
NSBufferGetPS() 122, 141
NSBufferHandOff() 123
NSBufsizeProc() 147
NSCloseExternalFile() 125
NSCloseProc() 124, 148
NSCreateExternalFile() 125 to 126, 163
NSDupFontNotifyProc() 128
NSEndPage() 129
NSErrorMsg() 131
NSExternalCommandProc() 133
NSExternalProcessCommentCleanupProc() 134
NSExternalProcessCommentProc() 135
NSExternalProcessCommentSetupProc() 136
NSFreeMemoryProc() 137, 140
NSGetHostFontMutexProc() 138
NSMoreMemoryProc() 137, 140
NSProcessComment() 141
NSProgress() 142
NSPSExecuteStringProc() 143
NSReadProc() 149
NSReleaseHostFontMutexProc() 144
NSSeekProc() 150
NSStartPage() 145
NSTruncateProc() 151
NSWriteProc() 152
used to relay information 63
used to transfer data 112

CannotEmbedFontPolicy 75
CIERGB 32

206 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

CJK fonts 78
client configuration data, NSClientConfig

atmFile 169
clientData 167
externalProcessCommment 175
externalProcessCommmentCleanup 176
externalProcessCommmentSetup 175
fileSecurityDirList 87, 173
fileSecurityWorkingDir 87, 172
getHostFontMutex 176
hostFontCacheDir 173
hostFontCacheSize 173
hostfontSearchList 172
iccProfileDirList 174
iccProfilesStandardFolders 81, 175
ignoreStdTTFonts 74, 77, 176
initialVMFile 169
initialVMSize 170
intervaceVersionNum 171
languageCode 171
licenseID 170
productName 170
progressQuantum 170
releaseHostFontMutex 176
resourceSearchList 168
runningAsServer 171
scratchFileDirectory 168
serialnumber 170
setpagedeviceKeysCount 170
setpagedeviceKeysList 170
startupFile 169
startupNORM.ps 49
versionString 171

clientData 167
color rendering dictionaries 31
ColorMatchRGB 32
comment substitution 14
CompressObjects 16
CompressPages 49
conversion, parallel 26, 112
CoolType.dll 30

D
deallocating virtual memory 20
default values, Distiller parameters 41
Democonverter 25
democonverter 29
demofepapwin32.c 35
demomain.c 35
demopap.c 35
demopap.h 35
devcoord.h 33
distillation 51, 60 to 62, 112, 123, 184

Distiller core software 25
Distiller parameters 13

AlwaysEmbed 75
CannotEmbedFontPolicy 75
CompressObjects 16
CompressPages 49
default values 41, 47
MaxSubsetPct 75
NeverEmbed 75
Optimize 16
PDFX1aCheck 76
PDFX3Check 76
PDFXCompliantPDFOnly 76
setting 48 to 50
SubsetFonts 76
UsePrologue 17, 122

DoThumbnails 16
downloading CJK fonts 17
DSC comments

callbacks
NSExternalProcessCommentCleanupProc() 134,

176
NSExternalProcessCommentProc() 135, 175
NSExternalProcessCommentSetupProc() 136,

175
NSPSExecuteStringProc() 143

replacing 20
reporting 14

E
EmbedAllFonts 75
empty 29
enumerators, normPostScriptError 145
environment.h 33
EPS file

with screen preview 83
EPS sidelining 12, 15, 61
error messages 131
EuroscaleCoated 32
EuroscaleUncoated 32
exitserver 49 to 50
external files 12, 27

that represent conforming EPS programs 12
that represent image streams 12

externalcommand 67 to 68, 133
externalProcessComment 175
externalProcessCommentCleanup 176
externalProcessCommentSetup 175

F
file formats 39

Using Adobe PDF Converter SDK 207

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

file size limitations 69
filePerPage 112, 129, 184
fileSecurityDirList 173
fileSecurityWorkingDir 172
findfont 76
findresource 76
font policy 76
fontAllowMM 184
fontEmbedJobsFonts 185
FontFile 165
fontName 192
fonts 29

cache 28
CJK 78, 170
embedded in the PostScript data 18
emulation 31
faux 78
flag 193
ignoring TrueType fonts 74, 77, 176
OpenType 78
PAP support 18
policies 17, 76 to 80
replacement font 18
resolution 193
specifying directories to search for 115
strings 192
subsetting 76
synthesizing missing fonts 18
TrueType 78
unembeddable 78
width only 192

fsType 193
fullDocClientFile 185
fullDocFileName 184
full-document PDF files 12, 14, 22, 27, 52, 54, 58, 69,

112
functions

APCAddImage() 95
APCCreateDoc() 98
APCEnableDynamicGeneration() 101
APCInit() 105
APCSaveDoc() 108
NormalizerAddDiskStorageDevice() 111
NormalizerDisableDistilling() 112
NormalizerEnableDistilling() 114
NormalizerNewHostFontList() 115
NormalizerServerInit() 41, 117
NormalizerServerRunJob() 118
NormalizerServerShutdown() 119
NormalizerSetDisk0Prefix() 120

G
getHostFontMutex 176

GetOEMProcedure 169
global mutex 176

H
hash value 192
hasProtection 193
host font cache 26

adding fonts 193
control 17

host fonts 28
hostFontCacheDir 173
hostFontCacheSize 173
hostfontSearchList 115, 172
hot folders 15

I
ICC colorspace profiles 16
ICC profiles 81, 83, 174 to 175
iccProfileDirList 174
ICCProfiles 29
ICCProfiles (PDF Converter SDK folder) 84
iccProfilesStandardFolders 81, 175
ignoreStdTTFonts 74, 77, 176
image sidelining 12, 61
image stream sidelining 15
image streams 12
imagetopdf 30
ImagetoPDF.dll 30
initialVMFile 169
initialVMSize 170
interface, between the client and the PDF Converter

SDK 33
interfaceVersionNum 171
invalidfont 79
ioerror 123, 127, 145, 148 to 152
isBound 193
isHexName 193

J
JapanColor2001Coated 32
JapanColor2001Uncoated 32
JapanStandard 32
JapanWebCoated 32
job setup data, NSJobParams

filePerPage 51 to 56, 60 to 61, 112, 123, 129
sidelineEPS 123
sidelineImages 123

job submissions 15
jobOptions 186

208 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

jobs, when pertaining to PDF Converter SDK 11
JP2KLib.dll 29 to 30
JPEG2000 29
JTP architecture 25

L
languageCode 171
libACE.so 29
libAdobeXMP.so 30
libAGM.so 29 to 30
libapc.so 30
libAXE8SharedExpat.so 30
libBIB.so 29 to 30
libBIBUtils.so 29 to 30
libCoolType.so 30
libImagetoPDF.so 30
libJP2K.so 29 to 30
libMiniPDFL.so 30
libPDFL.so 30
licenseID 170
Linux Democonverter, building 38
LockDistillerParams 49 to 50

M
macro definitions 35
makeoperator 169
maxDistillTime 187
MaxSubsetPct 75
MD5 hash value 192
MiniPDFL.dll 30
mutex 28

callbacks
NSGetHostFontMutexProc() 138
NSReleaseHostFontMutexProc() 144

global 176

N
NeverEmbed 75
norm_unix_package_specs.h 35
norm_win_package_specs.h 35
NormalizerAddDiskStorageDevice() 111
NormalizerDisableDistilling() 112
NormalizerEnableDistilling() 114
NormalizerNewHostFontList() 115
NormalizerResult enumerators

normAlreadyInitialized 162
normClientCancel 162
normHasNotInitialized 162
normIncorrectInterfaceVersion 162

normInternalError 161
normNotNow 162
normOK 161
normOutOfDiskSpace 161
normOutOfMemory 161
normParameterError 161
normPostScriptError 63, 123, 127, 148 to 152, 161

NormalizerResult structure 161
NormalizerServerInit() 41, 117
NormalizerServerRunJob() 118
NormalizerServerShutdown() 119
NormalizerSetDisk0Prefix() 120
NormalizerSidelineType 127, 163
normAlreadyInitialized 162
normClientCancel 162
normHasNotInitialized 162
normIncorrectInterfaceVersion 162
normInternalError 161
normNotNow 162
normOk 161
normOutOfDiskSpace 161
normOutOfMemory 161
normParameterError 161
normPostScriptError 63, 123, 127, 145, 148 to 152, 161
NORMSearchList 87, 164
NSBackChanMsg() 121
NSBufferGetPS() 122, 141
NSBufferHandOff() 123
NSBufsizeProc 147
NSBufsizeProc() 147
NSClientConfig 41, 87, 166

hostfontSearchList 115
NSClientDataPtr 177
NSClientFile 70, 179
NSClientFile API 179, 184 to 185

about 69
benefits of 69
selecting 69

NSClientFileID 70, 178
NSClientFileProcs 70, 180
NSCloseExternalFile() 125
NSCloseProc 148
NSCloseProc() 124, 148
NSCreateExternalFile() 125 to 126, 163
NSDupFontNotifyProc() 128
NSEndPage() 112, 129
NSErrorMsg() 131
NSExternalCommand() 67 to 68
NSExternalCommandProc() 133
NSExternalProcessCommentCleanupProc() 134
NSExternalProcessCommentProc() 135
NSExternalProcessCommentSetupProc() 136
NSFileDataPtr 188
NSFreeMemoryProc() 137, 140
NSGetHostFontMutexProc() 138

Using Adobe PDF Converter SDK 209

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

NSHostFontListData 192
bindingOK 193
fontName 192
fsType 193
hasProtection 193
isBound 193
isHexName 193
outlineOK 193
pathName 192
periodic 193
resolution 193
signature 192
toCache 193
widthsOnly 192

NSHostFontListData structure 128
NSJobParams 183
NSMoreMemoryProc() 137, 140
NSPageInfo 130, 189
NSProcessComment() 141
NSProgress() 142
NSPSExecuteStringProc() 143
NSReadProc 149
NSReadProc() 149
NSReleaseHostFontMutexProc() 144
NSSeekProc 150
NSSeekProc() 150
NSServerDataPtr 190
NSStartPage() 145
NSTruncateProc 151
NSTruncateProc() 151
NSWriteProc 152
NSWriteProc() 152

O
OpenType fonts 78
opsys.h 34
Optimize 16
os_errno.h 34
os_pthread.h 34
os_time.h 34
outlineOK 193
outputResourceFinalStatus 186

P
page device keys

reporting 15
See also setpagedevice

page streams 14
pageLabel 189
PAL_SECAM 32
PAP font support 18, 39

parallel converison 26, 138, 144
parallel conversion 26
pathName 192
pathnames 22
pathnames supplied to Democonverter 39
PDF

FontFile 165
full-document PDF files 12, 14, 22, 27, 52, 54, 58, 69,

112
page files 12, 27
page streams 12, 14, 112, 184
Producer 170

PDF Converter SDK
compared to Acrobat Distiller 13
components of 26
controlling 12
data consumed 10
data produced 11
JTP architecture 25
purpose 10

pdfmark
Producer key 19

PDFX1aCheck 76
PDFX3Check 76
PDFXCompliantPDFOnly 76
performance, optimizing 13, 62
periodic 193
plateColor 189
platform binding 193
platform binding, validation 193
PNSHostFontListData 192
PNSHostFontListData (See NSHostFontListData) 192
Posix

error codes 34
posix_environment.h 34
PostScript

file system emulation 14 to 15
findfont 76
findresource 76
invalifont 79
ioerror 123, 127, 145, 148 to 152
page device keys 15, 34, 61

See also setpagedevice
restricting access to file system 87
setdistillerparams (PS operator) 41, 49
streams 11

PostScript comments
page label reference 130
plate color reference 130
reporting 14
substitution of 14

PostScript Interpreter 25
initializing virtual memory 31
startup file 13, 31

PostScript operators

210 Using Adobe PDF Converter SDK

Adobe Confidential Information
Covered under the applicable license agreement with Adobe.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

externalcommand 133
ProcSet 31
Producer 170
Producer key

pdfmark 19
productName 170
progressQuantum 170
protos.h 34
ps.vm 31
publictypes.h 34

Q
Quartz printing architecture 18

R
re-entrancy 26
releaseHostFontMutex 176
replacing DSC comments 20
reporting page information 14
resolution 193
resolution, font 193
Resource 31
resourceSearchList 168
restricting access 87
runMethod 186
runningAsServer 171

S
scratch files 168
scratchFileDirectory 168
security 87
serialnumber 170
setdistillerparams (PS operator) 41, 49
setpagedeviceKeysCount 170
setpagedeviceKeysList 170
Settings 31
sidelineEPS 184
sidelineImages 184
sidelining

EPS 12, 15, 61
image streams 15

signature 192
SMPTE 32
spdkeys.h 34, 170
SPDKeyValue 194
sRGB 33
startupFile 169
startupNORM.ps 31, 49
strings, font 192

structures
APCClientConfig 159
NormalizerResult 161
NormalizerSidelineType 163
NORMSearchList 87, 164
NSClientConfig 41, 166
NSClientFile 179
NSFileDataPtr 188
NSHostFontListData 128, 192
NSJobParams 51, 183
NSPageInfo 130, 189
NSServerDataPtr 190
PNSHostFontListData (See

NSHostFontListData) 192
PNSHostFontListData (see

NSHostFontListData) 192
SPDKeyValue 194

SubsetFonts 76
subsetting fonts 76
SubstituteFont, PostScript key 79 to 80
superatm.db 31
supported platforms 20
system security 87

T
temporary files 168
toCache 193
TrueType fonts 78

U
UNICODE 22
UsePrologue 17, 122
user interfaces 15
USSheetfedCoated 32
USSheetfedUncoated 32
USWebCoatedSWOP 33
USWebUncoated 33

V
versionString 171
virtual memory 20

W
watched folders 15
WideGamutRGB 33
widthsOnly 192
Windows Democonverter, building 37

	Part I
	Adobe PDF Converter SDK Concepts
	About Adobe PDF Converter SDK
	1.1 Overview
	1.1.1 What It Does
	1.1.2 What It Consumes
	1.1.3 What It Produces
	1.1.4 Usage Scenarios
	1.1.5 How To Control Adobe PDF Converter SDK

	1.2 Comparing Adobe PDF Converter SDK and Distiller
	1.2.1 Similarities
	1.2.2 Differences
	1.3.1 In Pathnames

	New in this release: APC 3.2
	2.1 New Features

	Architectural Overview
	3.1 Basic Architecture
	3.2 Constituents of the Adobe PDF Converter SDK
	3.3 Parallel Conversion

	About the Deliverable Files
	Building and Using Democonverter
	5.1 Supported platforms and compilers
	5.2 Building Democonverter
	5.2.1 Windows
	5.2.2 Linux

	5.3 Using Democonverter
	5.3.1 Basic Command-Line Initialization
	5.3.2 Specifying Pathnames in Command Lines

	5.4 Democonverter PAP Font Support (Windows only)

	Distiller Parameters
	6.1 Listing of Default Parameter Values
	6.2 Supported values of CheckCompliance key
	6.3 Setting Distiller Parameter Values
	6.3.1 Adding PostScript Code to startupNORM.ps
	6.3.2 Submitting an exitserver Job to Adobe PDF Converter SDK
	6.3.3 Providing Job Options (Preferred Method)
	6.3.4 Setting Distiller Parameters from the Current Job

	Interactions Between Adobe PDF Converter SDK and Callbacks
	7.1 Callbacks for Transferring Data between the Adobe PDF Converter SDK and a Client
	7.1.1 How the Adobe PDF Converter SDK Uses Data Transfer Callbacks
	7.1.2 Private Client Data for Information about the Destination File
	7.1.3 Preparing to Transfer a PDF Page Stream/File
	7.1.4 Completing the Transfer of Content into a PDF Page File
	7.1.5 Preparing to Transfer the Contents of an External File
	7.1.6 Completing Transfer of the Contents of an External File
	7.1.7 Getting a Buffer of PostScript Stream
	7.1.8 Handing Off a Buffer of PDF or Other Stream

	7.2 Callbacks That Relay Information to the Client
	7.2.1 Passing Text Strings that Describe Fatal Errors
	7.2.2 Passing Text Strings that Describe PostScript Interpreter Errors
	7.2.3 Reporting Progress

	7.3 Callbacks for Modifying DSC and PostScript
	7.3.1 Keying Off a DSC Comment to Skip PostScript or to Execute Client-Provided PostScript
	7.3.2 Reporting and Allowing Substitutions for DSC Comments

	7.4 Callback for Responding to the externalcomm and PostScript Operator
	7.5 Callbacks for handling fatal error conditions
	7.6 Callbacks for handling pageskip feature

	Using the NSClientFile API
	8.1 About the NSClientFile API
	8.2 File Size Limitations
	8.3 Selecting File I/O Methods
	8.4 Data That Describes a Client File

	Font-Related Behavior
	9.1 Review of Parameters That Affect Font-Related Behavior
	9.2 Font Policy
	9.2.1 Where Adobe PDF Converter SDK Looks for Fonts
	9.2.2 Rules for Embedding
	9.2.3 Response to Missing Fonts
	9.2.4 Response to Unembeddable Fonts

	9.3 PostScript SubstituteFont Key Influences Font Policy

	Frequently Asked Questions
	10.1 Locations of ICC Profile Folders (Windows)
	10.2 Unexpected Failure
	10.3 Full-document PDF File
	10.4 Warning Message
	10.5 Offending command warning
	10.6 Error message #8
	10.7 Error Message Processing PostScript that Contains a Screen Preview
	10.8 Requirement for “iccprofiles” Folder

	Restricting PostScript File System Access
	11.1 Specifying Directories for Restricted Access
	11.2 Access Strings
	11.2.1 Adobe PDF Converter SDK Folder Security Settings

	11.3 Processing the Security Settings
	11.4 Example Security Settings
	11.4.1 Example PostScript file to verify security settings

	Part II
	Adobe PDF Converter SDK Reference
	Functions and Callbacks
	NSClientFile API
	Conversion of Image Files to PDF
	Conversion of PPML Files to PDF
	Dynamic N Page PDF Generation
	17.1 Improvement in Dynamic N Page PDF Generation

	Structures and Enumerations
	Standard TrueType Fonts
	Apache Software License, Version 1.1

